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SUMMARY

The theoretical development of a method of analysis for prediction of the
aerodynamic performance of horizontal axis wind turbines is presented in this
report. The method is based on the assumption that a helical vortex emanates
from each blade element. Collectively these vortices form a vortex system
that extends infinitely far downstream of the blade. Velocities induced by
this vortex system are found by applying the Biot-Savart Taw. Accordingly,
this method avoids the use of any interference factors w«&:ich are used in many
of the momentum theories. What': more, the method can be used to predict the
performance of wind turbines with a small number of blades .

The wind turbine performance of a two-bladed rotor is determined and
compared to existing experimental data and to corresponding values computed
from the widely used PROP code. It was found that the present method com-
pared favorably with experimental data especially for low wind velocities.

The wind turbine performance of a single-bladed rotor is determined
subject to the condition that there was no Tift on the counterweight or
support span. Output power for a one-bladed wind turbine was compared to

that of a two-bladed machine.



1. INTRODUCTION

Over the past few years, interest in the use of windmills to produce power
has grown significantly. In support of this interest, considerable research
has been directed toward the measurement and prediction of wind turbine
performance. The majority of the theoretical effort employed thus far is
based on a variety of methods that have long been used in the calculation of
propelier performance; classical momentum theory along with a number of blade-
element theories have been utilized with varying degrss. of cuccess.

A computer code developed by Wilson and Wa' ey a: Tre an Store
University, [1], and entitled PROP, is at prescwt widair orad ¢o ¢ eitvuine
the aerodynamic performance of horizontal axis wind “urcinss. i crde was
developed several years ago as a general purpose » »4 * .+ “ingd perrovaiance
computer program. Accordingly, PROP has a certain amuu.. 2f Hilc-in
flexibiiity. For example, the code contains four blade tip-icss models
(NASA, Prandtl, Goldstein, and no tip-loss) which can be incorporated into
the performance prediction; however, the choice of which model to use is left
to the user's discretion.

The PROP code is based on @ modified blade element analysis called the
Glauert Vortex Theory [1]. An essential assumption of this theory is that
vortices originate from the rotating blades to form a helical vortex system:
that passes downstream. Of fundamental importance, this trailing vortex
system induces velocities which alter the flow around the blades and in turn
affect the forces acting on the blades. It should be noted that because of
the complexity invoived the induced velocities are not determined directly in
the Glayert Vortex Theory. Instead, axial and radial interference factors are
calculated from which the induced velocity of the vortex system on any blade

element can be evaluated. The calculation of these interference factors is



simplified by assuming that the rotor has an infinite number of blades. This
assumption removes the‘éomp1exity associated with the periodicity of the
blade flow and permits direct application of momentum theory for the evalu-
ation of the interference velocities. However, for single and double-bladed
rotors, of principal interest here, this assumption is questionable.

Users of ihe PROP code have frequently encountered problems with the
converaence 9f the numerical procedure in the program. It has been found
that vadoy certain operating conditions of a wind turbine, particularly those
for large t.p speed ratios (generally small wind velocities), the local value
of the axial interference factor can exceed a theoretically limiting value
for ail tip-Toss models. When the axial interference facto lies in the
range 1/2 < a < 1, this state is known as a turbulence wake or vortex ring
state. Under such a condition, the velocity in the fully developed wake
will then reverse direction and flow back toward the rotor. Therefore, the
momentum~blade element theory ceases te be valid, and it is then necessary
to modify the analysis by using Glauert's empirical data. These empirical
corrections have been developed for the momentum-blade element theory and
discussed in some detail in [2,3], however, theoretical performance esti-
mations in the region are suspect even when corrected by empirical methods.

Experience has also revealed from comparison of PROP code predictions
with experimental data that for all blade tip-loss models, PROP results tend
to underestimate measured power output both near "cut-in" and rated wind
speeds.

Because of the inherent Timitations with the momentum-blade element
theory and because of the need to develop an analytical method for predicting
the aerodynamic performance of wind turbines with a small number of blades,

it was decided that a different and more complete method of anlysis was in



order. The purpose of this report is to describe the development of the
mathod which is termed a vortex wake model.

In the analysis, the induced velocity is directly calculated by
integration of the Biot-Savart law under the assumption that a filament of
the trailing vortices is helical in form, extends infinitely downstream of
the rotor, and has a constant diameter. It is also assumed that the helical
vortex system produced at the blade is traveling downstream with a constant
velocity. This velocity is equal to the value at the rotor blade, i.e.. the
inflow velocity through rotor’s plane of rotation. This implies that the
interactions between wake elements are ignored. The 1ifting Tine theory is
used to model the blades.

Aﬁ analysis and a computer program for predicting the aerodynamic
performance of a horizontal wind turbine by using a vortex wake method has
also been developed by R. H. Miller, et al [3]. The difference between that
analysis and the present one is in the modeling of the circulation around the
blade and in the vortex wake and in the method of integrating the Biot-Savart
Taw to evaluate Tocal induced velocities. In [3], the bound circulation for
blade is modeled as a step function. This means that each blade is divided
into a number of spanwise sections, which are, in general, of urequal length.
Each blade section is then ;epresented by a bound line vortex of constant
strength. Since jump discontinuties exist in circulation between adjacent
spanwise blade sections, a trailing Tine vortex must be generated at each of
these pointse These helical vortices are further approximated by a2 sewvi«d of
straight Tine vortex segments, each spanning an angle of 19° er 15° over
which integration is performed. In the current analysis, a continuous vari-

ation of circulation in the spanwise direction is used and the integration is



performed for the whole helical vortex sheet in the trailing wake to evaluate
the Tocal induced velocities.

Tue mathod developed was found to be very flexible and is capabie of
socurataly wread’cting "cut-in" speeds and wind turbine output power. The
metha! cen bandle rotors having any number of blades and the blades may be
zrbitvariiy shiped and twisteds However, this study will concentrate on one
anu twe-braded rotors with blade geometry appropriate to NASA wind turbines
[4,5].

It should also be mentioned that, although the analysis presented in the
report is limited to steady uniform flow, the technique can be readily
extended to non-steady wind with shear flow and to the case of an expanding
wake.

Because the method proposed herein is based on a propeller model and
because PROP also is based on a number of propeller models, it was felt that
a brief review of some propelier theories as applied to wind turbines was
appropriate. Hence, momentum theory, blade element theory and vortex theory
will all be briefly discussed in Appendix A.

In the following, the present method, which is based on the vortex theory
of propellers along with Moriya's Theory [6], will be described. Discussion
will be given as to how Moriya's Thecry may be implemented in determining
wind turbine performance. Results of a number of calculations will be come
pared with existing experimental data. Finally, the method will be used to

predict the performance of a single-bladed rotor.
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NOMENCLATURE

axial interference factor
rotational interference factor

1ift curve slope

magnitude of vector (g - :“)

sine series coefficients

distance shown in Fig. A=5

Tift coefficient for zero incidence
chord

matrix defined by Eq. (2-68)

drag coefficient

1ift coefficient

power coefficient [P/(3 /2pn®y5)]
drag

parameter defined in Eq. {A-30)
general functions

axial force or drag on wind turbine
non-dimensional axfal force
reduction factor

function defined in Eq. (2-71)

parameter defined as h = r tan¢

unit vector along X axis
induction factor
unit vector along Y axis

unit vector along Z axis



k series index

K non-dimensional circulation distribution function
L Tift

m mass flow rate

N number of blades

p pressure

Po downstream pressure

P power

Pe rated electrical power

P generated electrical power

Pr power produced by rotor

Q torque

Qc non-dimensional torgue

rsr' distance along the blade

R radius of rotor

Re effective radius

Ry radius defined as R = R cosy

$ position vector from the origin to an element of the

trailing vortex filament

S gap width between vortex sheets shown in Fige A-5
U velocity of airflow through rotor

Up radial component of velocity

u circumferential component of velocity

v mean velocity

Vo wind velocity

Vo downstream velocity

W4 induced velocity



velocity of rigid helicoidal vortex sheet
normal component of induced velocity
tangential component of induced velogity
component of induced velocity in X direction
component of induced velocity in Y direction
component of induced velocity in Z direction
resultant velocity

undisturbed velocity

X axis

Y axis

rearward distance from the rotor, Z axis
angle of attack

effective angle of attack

geometyic angle of attack

induced angle of attack

blade angle

vortex strength

circulation

interval around a singularity

angle defined in Eq. (2-43)

vector defined in Fig. 2-2

transformation variable defined in Eq. (2-74)
pitch angle of a helixical vort~x filament

azimuthal variable of a helical vortex filament
measured from 6y

angle between the X-axis and the kth blade

<o



Vo

A d ratio, ===
0 speed ratio Re
re
u speed ratio, =-
Yo
or'
' speed ratio, =--
Yo
R
Ug tip speed ratio, =--
Vo
£, &' non-dimensional distances along the blade
g parameter defined by Fg.{A-36)
p density
¢ rotor solidity [NC/(2wR)]
oy, Tocal solidity

TgsTlsee  parameters defined by Eq. (A-43) and Eq. (A-44)

o' angle defined by Eq. (2-26)
) velocity potential

Y coning angle

Q rotational speed

Q2 rotational speed imparted to the air



2. ARALVSES

2.1 1Introduction to Vortex Theovy

From ideal flew theory it may be vecalled that vortieity is defined as
cwise the angular velocity of an element of fluide A vregion containing a
concantrated amount of voviicity is ealled a vortex and a vorter is said to
have a strength equal to the circulation around the vortex area. Helmholtz
theorems £7]1 are a2 set of propositions that apply to vortices and vortex
mechanics. One theorem states that in an inviseid flow within which the
forces are conservative and the pressure is only a function of density,
rotation of fluid particles, which travel along stream lines, i1s permanent.
From this theoram, often referred to as the vortex continuity theorem, it
becomes evident that a vor'ex filament caarot cnd abruptly, and, unlass the
filament forms a clesed path, 1t wmust extend either to infinity or io the
boundaries of the fluide Associated with a vortex filament is a velagity
field that the filament generates. This velocity is commonly referred to as
the induced velocitye The induced velocity can be calculated from the

Biot-Savart taw [8] as

> >

> Y r X ds ‘

dwy = v M;?w (2-1)
vl

> >

where dwy is the induced velocity due to a vortex element, of length ds
»

and strength v, and r is the position vector from the point at which the

induced velocity is being calculated to the element of the vortex.

2.2 Vortex Theory of Propellers
The vortex theovy of propellers is based on the concept that each

element of the blade can be treated as a two~dimensional airfoil section



subjeet to a certain local resultant velocity W and that the Tocal 1ift of
the blade element, dL, is associated with the ¢irculation I' around the
contour of the alrfoils The local resultant velecity is found from the
vector sum of the free stream velocity, the circumferential velocity of the
section and the induced F#low velocity. The Kutta=Joukowski theorem 9], for

each blade eleament, may be written
dl = plldr (2-2)

where p 15 the Tocal density of the air and dr is the elemental blade

Tengthe In general, the circulation I' around a blade will vary along the
blade span. As the circulation changes hv the amount -g; dr between the
points r and r + dr along the blade Tength, it follows, from the vortex
continuity principle, that a trailing vortex filament of the same strength
emanates from the blade element and extends infinitely far downstream of the
blade. Because trailing vortices emanate from every point along the rotating
blade, they form a vortex sheet of approximately helical shape. The number of
such sheets is equal to the number of blades. Due to the trailing vortex
sheets there is an induced velocity distribution, wy, in the plane of rotor.
This induced velocity can be used to obtain the lacal resultant velocity W
that may in turn be used in the Kutta-Joukowski theorem to determine the Tift

on a blade element.
2.3 General Assumptions

The principle assumptions on which the present analysis of the
aerodynamic performance of a horizontal axis wind turbine is based may be
stated as follows:

1) that the air Tlow is incompressibie and inviscid,



2) that the free stream velogity is always parallel to the rotor shaft
centerline and uniform along the span,

3) that the relative velocity of a blade element to the airstream is
identical to the velogity that the blade element would have were it
placed in a two~dimensional stream with an identical relative
velocity,

4) +that the trailing vortex system is nelicvidal with constant pitch
and diameter, extending infinitely far downstream of the blade, and
moving with a constant velogity determined at the rotor (semi-rigid
wake), and

5) that the hub has no effect on the rotor flow.

Unlilke other vortex theories c.g., Goldstein [10] and Theodorson [11]
theories, the present method of analysis, which will be termed the helical
vortex method, does not vestrict the circulation along the blade to that of
an optimum distribution corresponding to a rigid helical vortex system moving
backward from the blade with constant velocity. However, like other vortex
methods, the current method does assume that slipstream expansion is of
secondary jmportance and thus may be neglected. Slipstream expansion is due
to the gradual decrease of axial velocity behind the rotor which is caused by
the decrease in pressure benind the rotor. The decrease in air pressure
behind a wind turbine and the increase in air pressure immediately in front
of rotor is a direct reaction of the axial force on the wind turbine. It
shiould be noted that the first, second and third assumptions in the preceding
list of assumptions are identical to those used in Goldstein and Theoderson
thaories. Further, no hub is permissible in either of these theories; ali

integrations must begin at the origin and not at the hub radius.



The physical arrangement of the problem at hand is illustrated in Fig.
2=1. The coordinate systems for the analysis are shown in Fig. 2=, The
Cartesian coordinates X, Y, and Z are fixed in a space and were chosen such
that the X-Y axes form a plane of rotation and the Z-axis is the axis of
rotation. Moreover, the Z coordinate is the distance measured from the rotor
to a segment of trailing vortex parallel to the axis of rotation of the rotor.
The second coordinate system used is a cylindrical coordinate system (r,0,2z)
which is fixed to the rotating biade. The r-axis is directed along the blade
span, the 0-axis measures the azimuthal angle measured from the kth blade and
the z-axis is the axis of rotation. To facilitate the analysis, the blade
whose induced velocity is to be caiculated, is assumed to be coincident with

the x-axis as shown in Fig. 2-2.
2.4 Calculation of Induced Velocity

As has been mentioned, it is assumed that the vortex filament trailing
from a blade element extends infinitely far downstream of the rotor.
Associated with this vortex is a velocity field, commonly referred to as the
induced velecity. This velocity field can be calcuiated from the Biot-Savart
Taw [8] i.e., equation (2-1). This Taw is stated in vector differential form
as

+ >
. gr (S - r') xdn
dwi(r') = T (2-3)

R

>
In this equation, dwy is the differential velocity induced at a point r' on

5>
the blade due to a segment, dn, of the trailing vortex filament which had

dr
originated at a point r on the kth blade. Also dr, or-gndr, is the change in
v .
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circulation between the points v and r + dr along the blade, which is equai
to the circulation of the traiiing vortex from the blade element dr.
Vectors g, " s and the differential vortex filament length , d;, are
shown in Fige 2~2, and may be expressed as

~

[N (2-4)
.> o o n

= prcos(e+ ) i+ rsin(e+ 6g) j+ ro tany k (2-5)
> ] . -
dn = rde { -sin(o + o) 1 + cos(6 + o) J + tang K } (2-6)

In these expressions © is the azimuthal angular variable of the helix measured

from the kih blade and ¢ is the pitch of the helix. Both are shown in Fig.
2-2. Letting h = r tany for simplicity and noting that ¢ is related to the

inflow velocity U and the rotational velocity of rotor, 2, by

U
TANY = mommm—— (2-7)
it follows that
U
h o=y Lang = s (2-8)
@ 4 EZ
r

Thus, equations (2-5) and (2-6) may be written

~ - ~

r cos(@ + 0g) i + r sin(0 + o) j + ho k (2-9)

wnd
i

a.
=
i

do {-r sin{6 + 0g) i + r cos(® + 6,)j + h k } (2-10)

Using these equations, the cross product in the numerator of equation (2-3)

16
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can be evaluated as folilows

n ~ a

o . i 3 k
(S-7") xdn=dé §r cos(® + 6) - r' r sin(e + o) ho
-r sin(6 + 6y) r cos(0 + 6y) R
r sin(e + 6¢) ho r cos{6 + ) - r' he
= deo ; = @0 3
r cos(6 + 8) h wr sin(e + o) h

r cos(® + &)= r' v sin(® + o)

-r sin(6 + o) r cos(0 + o)

~

do{hr|sin(e + o) - 6 cos(6 + 6)] i

h [(r' - r cos(6 + 6y) - re sin(e + 6g)] j

+
+ | (r2 - vr' cos(e + 6¢)] k } (2-11)
Also,
> >
5.1 =(r2 - 2rr* cos( + 6y) + r'2 + h262)1/2 (2-12)
+ * -
Letting A = |S - r'| for simplicity, noting that dw; can be expressed in

terms of its components as

" ~ ”

> ..
dwy = dwy 1+ dwy J + dwz Kk (2-13)



[
o

and combining equations (2-3), (2-11}, (2-12) and (2-13), yields

Wy © mwemme hr[sin(e + 0p) - 0 cos(6 + 0y)]do (2-14)

GWy = m h [r' = r cos(6 + 6g) - ro sin(o + o) ]de (2-15)
i

dp
ar dr
AWy = === [ = prr' cos(0 + o) ]de (2-16)
4np3
The induced velocity components at r' due to a single helical vortex

filament that emanates from the kth blade section located a distance r along
the span can be obtained by integrating equations (2-14), (2-15) and (2-16)
with respect to © ¥rom 0 to infinity. WNow, if there are N blades, equations

(2-9), (2-10) and (2-12) become

s =rcos(6+0g) i+ rsin(6+6) j+ho k (2-17)
> ~ a ~
dn = de [-r sin(6 + 6g) i+ r cos(6 + 6) j+hk ]
(2-18)
2 4 12 gt 2421172
A = [re + r'¢ -2rr' cos(6 + o) + héel)] (2-19)
where
25 (N=k
o = =t (2-20)

and k denotes the corresponding blade. Also, it is assumcd that the blade
with k = N always coincides with the x-axis. The components of induced
velocity due to N helical vortices emanating from each blade element located

distance r from the axis of rotation are given by



Z
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Fig. 2=38 Veledlly diagram showing induced velecity and its components
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dw PR
* 45 !;::1

S

6
A3 (2-21)

N ©®
dr dr :E: ‘la he [sin(0 + o) = 0 cos(o + 6)]
d
0

|

dwy =
J 4n k:l

N o
ar dr :E: hl. h [r' = rcos(é + ) = ro sin(o + Ok)]d
]

0

a3 (2-22)

© ,
cost % gk)] do (2-23)

47 k=1 0

N @
dar dr [PZ -
dWZ T eowece

A3

However, dwy = 0 if the diameter of the voriex helix is constant. in

addition, if the induced velocity at radius r' is decomposed into directions

-}.
normal and paraliel to the undisturbed velocity, W', of the blade element

(refer to Fig. 2-3), it may be seen that

dWp = dwy cose’ = dwy sing'

dwy = dwz sing' + dwy cos¢’
where
1 -1 VO
¢ = tan -—;5
. r'e
Letting n' = - it is easy to show that
0 K
cosy' =
1
sing' =
(0'2 + 1) 1/2

(2-24)

(2-25)

(2-26)

(2-27)

(2-28)

Using these equations, the elements of induced velocity componesnts can be

20



rewritten as

dp N o

dr dr z f [¥2 = vr' cos(6 + 0,)] u' + h |r cos(6 + o) +
dw

" Yo 30+ w22

re sin(e + o) - r']

do (2-29)
dr N po
y r dr :E: ‘]~ [v2 = vr' cos{e + )] = i [r cos(e + 6) +
W £ seemanennans d

ro sin(o + o) = '] u'
X de (2-30)

If the coning angle ¥, shown in Fig. 2-4, is taken into account, the

components of the induced velocity may be expressed as

dwn‘-:-'-——-——-

dp N w
dr dr ~i' [¥2 = rr* cos(e + 6)] u' + h [r cos(o + o) +
4weos¥ k=1 Y O a3(1 + w'2)l/e

re sin(e + o) = r']

de (2-31)
dr N e
p dr dr .lq [¥2 = rr' cos(® + 6¢)] = h [r cos(e + o) +
Wi © e
¢ 4mcost =1 Yo p3(1 + n'2)1/2

rosin(6 + o) - r']

do (2-32)

21
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Non-dimensionalizing the distance parameters by the rotor radius R

r
E 2 o 2=33
- (2-33)
]
' o e 2-34
£ - (2-34)
and combining with equation (2-19) yields
he ,.1/2
A =R [£2-8'2 - 268" cos(0 + 6y) + “ 02] / (2-35)
R
Also,
lg ] '] g'
u' 2:5--» L'.-'L (L) = o (2-36)
o R Vo A
and
(hg + £'2)L/2
(1 + u'2)1/2 o e (2-37)
A
)
where Ao, the speed ratio, is defined as
v
0
Ag = mee 2-38
0= 55 (2-38)

By applying equations (2-33) through (2-38) to equations (2-31) and (2-32),

the differential components of induced velocity can be rewritten as

41rRL k=1 Df/Z D%/Z

Nl*o - Nz

p3/2 pl/2
1 2

ada
4WR

ar N
e S do (2-39)

dwi = de (2-40)

23
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where
R, = R cosy
i = [82 - 82" cos(0 + Op)]
Ng = [£(osin(0 + O) + cos(0 + Ox)) = &'} g

2
Dy = €2 ¢ 8'2=2€€'ces(0 + ) @ Eé 02
R

8]

2
Dg AOZ s go

Vo cost = wpcose'
h =

Wpsing'
y
The total components of induced velocities can be obtained by integrating
equations (2-39) and (2-40) along the biade span from the non-dimensional
hub radius, Epyps to the non-dimensional tip radius, 1. However, Moriya [6]
proved that wy is always zero at any point on the blade. Hence, the total
induced velocity at point r' of the blade due to all trailing vortices

originating from the blade is,

1
dr N [
d€ dg f Npgt + Nod,
£' e B . 8 =41
Ehub 1 2

It can be seen that difficulty arises when the integral in equation (2-41) fis
evaluated at the point £ = £' when 6 = Oy = 0, 1In this case, the integral
becomes infinitely large, and because of this singularity, the integral in
equation (2-39) can not be accurately determined in the neighborhood of this
particular point. However, the problem can be resolved by applying Moriya's

Theovy [6] which is described in the next section.



2.5 pApplication of Moriya's Theovy

Moriya [6] has developed a simple method for determining the
downwash velocity. This was accomplished by introducing an additional
parameter to the analysise This factor is defined as the ratio of the induced
velocity, due to a helical vortex, to the induced velocity, due to a straight

vortex, Of the same strength i.e.,

dwp
I = e (2-42)
dvin1
where dwp and dwpy are induced velocities created by helical and straight
vortices respectively. The factor I is appropriately termed an induction
factor and may be considered to be a continuous function.

Induced velocity at point v' of the blade due to a helical vortex sheet
emanating from point r of the blade can be obtained from equation (2-39).
The velocity induced at point r' of the blade due to a straight vortex sheet
emanating from point r of the blade and extending infinitely far downstream
of the blade can be obtained by applying the Biot-Savart lTaw. The following

apply for a straight vortex line

* " n

(s - ;') == (p' =p) i+ (r' =r) tane k (2-43)
.) L2
dn = (r' -r) sece de k (2-44)

> > |3 3 (2-45)
! 'l { (r' - r) secel}
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In these relations, ¢ is the angle betveen the vector {s - r') and the
> ’
nermal to dn. Introducing equations (2-43), (2-44) and (2-45) into equation
T
=, the induced velocity at the point r'

2
of the blade due to a straight vortex line that emanates from point r of the

(2=1) and integrating from 0 to

blade and trails infinitely far downstream of the blade can be expressed as

dr .
dr @ 2 cosc de
4q o re=r
dp
T dr
d 1
= (2-46)
4y I
In terms of non-dimensioenalized radial distances this equation may be
written
dp
d ' & * ! 2-47
Wi (E') & == p— (2-47)
If the blade is rotated by a coning angle ¥, equation (2-47) becomes
dp
ggde -
dvipy(8') = 7 (2-48)
Ry &-¢g'

By combining equations (2-42) and (2-48), the element of the normal induced
velocity due to a helical vortex sheet originating at point r on the blade

may be written as
dr

gt de 1

de(%' ) =

2-49)
4'HRL £ = gl (



An induction factor which is a function of £, &' and A, only is derived,

using equations (2-39) and (2-49), as

LWL N N
1{8, &' Ag) = (£ = &') :§: ‘/0 AR (2-50)
ksl /o D32 gl/2
1

It should be pointed out that the integral in the above equation becomes
infinitely large as & approaches &' and at ¢ = 8 = 0. vThus, it would appear
that the induction factor can not be determined with any accuracy for a small
segment in the neighborhood of £'. However, since the induction factor is a
continuous function, by virtue of its definition, it can be approximated by
interpolation in the neighborhood of £ = &', Numerical values for the
induction Factor were determined by using Laguerre-Gaussian quadratures.
Details of that integration may be found in volume II of this report. Having
determined the distribution of the induction factor along the blade, the

induced velocity at any point &' on the blade can be obtained by integrating

equation (2-49) from the hub to the blade tip, i.e.,

1 4
[ dg I 2
wp(g') = P = a'dg (2-51)
L
Ehub

This integral can be numerically evaluated providing an appropriate function
for circulation T is in hande This step will be performed in the next two

sections.

2.6 CGoverning Equation Formulation

The governing equation can be formulated from the fact that if the blade
section is positioned at a geometric angle of attack, 0gs relative to the

undisturbed incoming fluid velocity W', its setting relative to the resultant
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velocity W, is ag diminished by the downwash angle, Fig (2-5). Thus, this
equation may he written as

ag = 0g = & (2-52)
where ap is effective angle of attack and i, the induced angle of attack.

The induced angle of attack may be obtained from Fig. (2-5) as
af = tan s (2-53)

The fact that the induced velocity, and therefore the induced angle of attack,
is 1tself a negative number accounts for the negative sign in equation
(2-52). The geometric angle of attack can be obtained from Fig. (2-5) as
-1 2,
ag = tan (ET-) -8 (2-54)
where B is the pitch angle of the blade element.
The induced angle of attack may be expanded in a power series in terms

Wn Wp
of -ET, and, since the value of o is usually smail, the series may be

truncated after one term ..,

=l wp vy (WnIW')3 Wn
af = tan _!;JBTETFB 3 +0002";;"'

But, as may be seen from Fig. (2-5)

W = (Vocos2y + 92r'2 cosly)l/2

2 ,
RN + £'2)1/2
0
Thus,

Wp
af = (2-55)

2 172
RL2 (Ao + £'2) !

Combining equations (2-51) and (2-55), the induced angle of attack at point
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€| - S TT:
is obtained asl dr
i3 1
o = dg (2-56)
2 2 212 £-g
Ehub 47 RLR(Ag + ')

The circulation function may be expressed as a Fourier sine series which

satisfies the foliowing boundary conditions

T(Epyp) = T(1) =0 (2-57)
A function which satisfies these boundary conditions may be written as
E € 7 Ehub
r(g) = Ay sin | (mm) (-n—-—-a)} (2-58)
L - Epyb
m=1

The relation between circulation and 1ift coefficient at each section is

given by Kutta-Jdoukowski theorem [10] as

1
oWT = Gy, (—2!-— p'.-lz)c
ar

1
r = Ty cWCp (2-59)
where ¢ is the chord of the blade section.

The section 1ift coefficient for an effective angle of attack can bo

obtained from two-dimensional airfoil data i.e.,
Cp = CL (ag) (2-60)

Furthermore, as a practical means of handling the semi-infinite series in
equation (2-58), the series is truncated at M terms, (which wust be the same

number as the subdivision of the blade into elements).

M
£~

r(g) = ::E: Agsin | (mm)( h”b)] (2-61)
1o Epyy |

=1




@FM@MW
Now introducing (2-61) into (2-56) yields

1

= Ehub I

z mAp (m"r)( )] e d&
b~ Ehup € =8

m=1 Ehub

o = (2-62)

172
4REQ(A§ + £'2) / (L = Epun)

From equations (2-59), (2-60) and (2-61), and approximating the relative
velocity, W, by the undisturbed velocity W' (in first iteration), the

following equation may be written for any point &' along the blade

er ar
O (oe) = = = ¢
2 M £'= Enub
CL (0&@) = chgu Z Am sin (mﬂ) ( )
1 - Epup
m=1
M
i € " Ehub
Cp (o) = = 72 A sin § (mm) ( ) (2-63)
2 1= Epyp
e (g + E')  mel

Vg
and R mf§= is used for the first iteration.

This equation can be regarded as a relation between og and the unknown circu-
Jation coefficients Age Thus, by substituting equation (2-63) into equation
(2-52) Tor oq, and making use of equation (2-62) for oj, a single expression
is obtained which allows the unknown Ay to be determineds However, it is
not always possible to obtain an explicit equation for the section 1ift
cocfficient in terms of the section angle of attack from two-dimensional
airioll data. 1In that event, the solution must be obtained numerically.

A Tivrst approximation of the solution for ag may be obtained by assuming
a linear relation between section 1ift coefficient and the section effectivé

angle of attack f.eo,
CL = agoe + by (2-64)
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By introducing €h's cquatic: into equation (2-59) and rearranging, the

sectional effoc” ve anc™ 2 of attack 1s Tound to be

2r bg
C'e O e o LR =] (2-65)
.3 dp
Combining cquations (2-52), (2=54) and (2-65) yields
2r bo <1 %o
e o @4 2 e== 4 tan (ow) - B (2-66)
aghlc 3o €

Pow uniting eguations (2-61) and (2-62) with equation (2-66) results in

2 i &' Epub
— >§ Ap  sin | {ma)( 0o~
age /7, | 1 - Epub

=l

1 M 1 E = Ehub I
— :E: . IQ cos { (mn) (- ) dg =
& R2e(A2 + £'2)1/2 (1 - gpp) J 1-Epp | &=~
Lo : S A
=1 a0 b
tan (=) - 5 + (2-67)
g d

Equation (2-67) is applied at M locations of &'s. Thus, a system of M
equations are chtained which may be solved for the Ay. Substituting the Ay
into equation (2-61) and introducing the results into equation (2-65),
produccs an approximate value of oy along the blade.

A better approximation than the above linear form may he obtained by using
two-dimensional airfoil data and employing the following iteration process:

1) Use local ag obtained from equation (2-65) for M Tocations along the blade

to calculate the sectional C from two-dimensional airfoil data.

1
2) Calculate the Tocal circulationT : T gy ciCy.
3) Using equation (2-61) and values of I cbtained in the second step, the
following matrix equation may be established that can be used to determine

Am'Sc
fcl] {A}=1{r1} (2-68)
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whaere
57 = Shub
Cij = sin {}J¢y@:=.azr¢:=:={]

4) Calculate Tocal ey using equation (2-62)

5) Calculate a new Tocal og 3 0 = ag +

6) Obtain C_ from two-dimensional airfoil data using the value of op
calculated in step 5

7) Compare the most recently calculated C_ to the previous value of CL and

if they are agual, stoo the iteration, otherwise, go to step 2.

2.7 Determination of Induced Angle of Attack
The induced angle of attack can be obtained by applying equation
(2"'62) ioEn 3

M 1 E°E 1
z mAg cos | (ma)( hl‘b) dg
1= Epyy | (8-€")

m=1 g
as = hub (2-69)

4REQ(A§ ¥ g'2)1/2 1 - ghub)

S {

However, this expression has a singularity at the point &€ = £' and € = & = 0.

To remove this singularity, the above integral is broken intoc three separate

integrals:
~l E'ad g8 1
j g(g) dg =f g(g)de +f g(g)de + f g(&)de (2-70)
Ehub Ehub g'-8 g8
where
€ = Ehub
cos [(mn)( 4 )] I
1 - &hup
g(g) = (2-71)

£€- &

and § is a very small number (a ¢ of 105 was used in the computer program).
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The second integral on right hand side of equation (2~7G), stili
contains the singularitys; however, it may be given an approximate
treatment as follows. The induction factor in equation (2-50) is summed
over all blades. Thus, the factor may be written
I =1]+124 .40 (2-72)
where the subscripts denote the corresponding blades. Considering the
particular case of two-biladed rotor, i.e., N=2, and using equation (2-71),

the second integral in equaticn (2-70) can be rewritten as

§'+8 £ " Epub I g+ - Epyb, | T1
.I‘ cos | {mn)( d ) dg i/‘ cos | (mm) (=~ v ) deg +
1 - Ehup £ - &' L-tpyp | &~ &

£'=¢ £'=8
B €= I
~l~ cos [.(mw)(1 hUb)] e (1
LN £ =g
E-s hub " (2-73)

It should be noted only that the first integral in the above contains the
singularity. The reason for this is that the 1lst blade coincides with the
X axis and contains the point € = &' and © = €, = 0. Making a change of

variable
n=£=g' (2-74)

allows this integral to be rewritten as

E'+8 £~ Epub 11 8 E'+ n= Epyb | I3
cos | (mm)( 4 ) dg =~I. cos | (mw)( b ) dn
1 -&pyp J&-8 1 - Epub n

£'-8 -6

The integral now can be expanded as follows

8 E' n= Epyb 1§]
cos | (mn)( ) dn =
1 - Epub n

=8
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@uw.‘m e ue SR
u
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E\J\/ M ( \—i 3:"‘

-

B Epyp g . Iy
€0S | (7 ) (e ) ,lw €0 | (i) (e ) | o ) =
L 1- Ehub RV 1= Ehub n

wl)

P N A I
sin (mw)(-—--=ﬁgg-—) Qﬂ ain {fmw)( : )j ! dn (2-75)

B 1 = Equb 1= Ehub n

-t QG
By expanding sine and cosine teris ‘n power series and dropping terms of

order n2 and larger and noting ©...: 11 can be approximated as unity (in the
region of the singularity the halical vertex appears to be straight, thus by

definition (I=1) +n the interval o/ integration, it can be shown that

8 E'+ n . Ehub 11 2 S g' - Ehut
cos | (mm)( )) ) = - sin (mﬂ)(_,___‘___l_)]
L = Epup L= Ehup 1= Epup 1 - Epyb ]

-6

(2-76)

The second integral in equation (2-73) in which 6 = 7 can be directly

calculated, and hence, the induced angle of attack may he determined.

2.8 Power, Torque and Drag On a Wind Turbine

Once the iteration is successfully conciuded and the effective angle
of attack calculated, rotor forces and momentums and power can be calculated
by applying the following equations

dFl
dr = -Z- BCWZ(CLcos¢ + Cpsing) cosy (2-77)

qQ

- = B2 (C sing - Cpcose)r cosy (2-78)

dP
dr

pBeW2(CLsing ~ Cpcoséd)rR cosy (2-79)
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Integration yields
o
F o= (-§~ pBEW2) (Ccosy + Cpsing)R cosy di (2-80)
Ehub
L
G = (~§- pBek2) (CLsing = Cpeos¢)RZ cosy &ds (2-81)
Ehub
1
P = (~§— pBCl2) (CLsing ~ Cpcosy)R2Q cosy &dE (2-82)
€hub

Equations (2-77), (2-78) and (2-79} can easily be obtained from the geometry
of Fig. 2-6 and noting that C_ and Cp, the section 1ift and drag coefficients
respéctively, are defined as [9]

d.

CL R (2'°83)
1/2oW2cdy

dD
P e —— (2-84)
1/2oW2cdy

3, RESULTS AND DISCUSSION

A digital computer program was written to perform the analysis of the
preceding section. The flow diagram and the algorithm of performing the
iteration procedures described in the previous section and a 1ist of the
computer programs will be presented in Volume I of this report. Results
from several numerical investigations using the program will be presented
for both single and double bladed machines. Computed performance data will
be compared, where possible, to existing experimental data and to resuits

obtainaed from the PROP code for the same operating conditions.
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Fig. 2~6 Force components on a blade element
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5.1 Double=Biaded, MACA 23024 Atvfoil Wind Turbine Caleulations

In this seetion, the power output of a double=biaded rotor wind turbine
will be presented for Tour pitch angles and two different rotational speads.
The blade profiie used in all calculations is an NACA 23024 airfoil. This
particular blade section was chosen because it s tie blade section used in
the early NASA, Targe, wind turbines. Pertinent blade information is
displayed in Table I. The dimensions of the biade are given in Fig. 3-1,
and the aerodynamic blade data, i.e., the 1ift and drag coefficient
eurves, are shown in Figs. 3-2 and 3-3. These curves were taken from [12].
Further, because portions of the wind turbine blades may operate in the
“stalled vegion," which occur at blade angles of attack approximately 13° and
targer, the airfoil data had to be suppiemented with additional information.
This high angle of attack information was taken from [1]. 1t will be shown
Tater in this section that better understanding of this operating region is
urgently needed if improvements in performance prediction are to be realized.
it should also be mentioned that surface roughness has been accounted for in
Figs. 3-2 and 3-3, and that the curves correspond to a "half rough" (average
between rough and smooth curves) values. The Reynoids number is that
calculated at the mid span of the blade, hence, no account of the Reynolds
number variation along the blade is included. Subsequent evaluations can,
however, easily account for both blade surface roughness and Reynolds number
aeffects gimply by including this data as part of the computer input. At the
present time, these effects were considered secondary and therefore no effort
was expended to implement them in the computer program.

Circulation distribution along the blade must first be determined in
order to calculate wind turbine performance. Thic involves evaluation of the

assumed series for the circulation as described in the previous section.



A sample of the variation of this parameter against non-dimensional radius is
plotted in Fige 3=4 for the operating conditions specified.

Figure 3-5 was constructed in order to compare predicted wind turbine
power output to existing experimental data. The experimental data was taken
from NASA Mod=0 test results described in [4], [5] and [12]. Predicted power
output values were computed for a blade fixed at a pitch angle of 0°%
Experimental output data were obtained for a blade pitch angle of 0° for wind
speeds below 18 mphs at wind speeds larger than 18 mph, the blades were
pitched in order to maintain the rated power level of the machine.

1t should be mentioned that the power output in Fig. 3«5 is not rotor
power. Instead, an empirical relation, taken from [5], relating the rotor
povier to the alternator power has been useds This relationship accounis for
the losses in the power transmission (gearing, friction, etc.) and, of course,

is not applicable to all wind turbine instaliations. The relation is given by

Pg = 0,95 (P - 0.075P) (3-1)
where
Pg = generated electrical power, kW
P = power produced by the rotor, kW
P = rated elcetrical power, kW

From Fig. 3-5, it can bee seen that in general there is excellent agree-
ment between predicted and mean values of output power. Furthermore, the
present method predicts a “cut-in" wind speed of 8 mph which agrees very well
with the actual value veported in [41.

Figure 3-6 was drawn so as to compare predicted alternator power values
of the present method to corresponding values found by using the PROP computer
code. As may be seen, four models of the PROP code have been used: the
Prandtl model, the Goldstein model, the no~tip-Toss model and the NASA model.

The theoretical background for both the Prandtl and Goldstein models is



Table 1. Operating Condition of the Utility Pole
Two=Bladed Wind Turbine

Root/Tip chord, ft 6.25/2.08

Blade Geometry See Fige 3-1

Percent Root Cut~Out 23%

Blade Radius, ¥t. 62. 5

Coning Angle, Deg. 3.8

Solidity 0,033

Thickness to Chord Ratio 0. 24

Airfoil NACA 230-24

Pitch Angle, Deg. <1, 0, +1, 43

Airfoil Surface Rib Stitched
Fiberglass Cloth

Operating, RPM 32, 33

Blade Twist Zero




Fig. 3~1 Chord distribution along the biade
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briefly treated in Appendix A; the no-tip-loss model is self descriptive as it
does 1ot account for any hlade end effectsy the NASA model exploits the
simplicity of the no~tip-Toss model by accounting for blade end effects solely
by a reduction (3%) of the blade radius ~- this method is also called the
effective radius model.

Reference to Fig. 3~6 shows that results determined by the present method
are anywhere from 10 to 15% higher than those predicted by the PROP code for
wind speeds ranging from 8 to 20 mph. These results when combined with those
of Figs 3-5 reveal that PROP code methods underestimate the power output of
wind turbines in the wind speed range of interest: "cut-in" to rated.
Comparison of PROP predictions with experimental data was also performed in
[4] and [6]. It was found that the PROP cede methods underpredicted power
output and overpredicted “cut-in" wind speeds. Clearly, these findings are
in tctal agreement with the current findings.

When existing experimental data for blade pitch angles other than 0° were
compared to predicted results from both current and PROP models, it was found
that agreement is not as good as that displayed in Fig. 3-5. At present,
questions have been raised as to the reliability of the experimental data
[13]. Thus, those comparisons will not be shown. However, it was believed
that comparison between PROP prediction and current method calculations for
different blade pitch angles may be of some value. This comparison is
presented in the form of Tables II, III and IV where computed power output in
kw is shown against wind speeds for the five methods of prediction at blade
angles of -1°, +1° and +3° respectively. It must also be noted that the power
values presented are rotor power values i.e., they have not been corrected by
using equation (3-1). Moreover, the data are presented in tabular form
because of the difficulty in graphing results that are relatively close

together over various portions of the wind spectrum.
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Tabie II.

ORIGINAL PHCE W
OF POOR QUALITY

Pitch Angle: -1°

Rotor Power Vs. Wind Speed

WIND T PRANDIL | GOLDSTEIN [NO TiP-LOSS|  MAGA PRESERT

SPEED{  MODEL MODEL MODEL MUDEL MODEL

(MPH) ] (kw) (kw) (kw) (kw) (kw)
6 “1.7 ~1.7 1.9 2,8 =72
8 6.3 6.3 642 6.0 6.5
10 15.8 15.8 17.2 16.1 25.8
12 32.3 31.3 36,3 32.3 50,0
14 61.9 60.7 68.2 61.4 77.7
16 92.3 90.7 101.1 96.1 106.6
18 116.7 115.2 128.0 124,5 126.2
20 133.4 131.8 146.5 143.6 136.7
22 141.0 139,7 152.4 152.5 137.4
24 135.9 134,9 150.3 146.6 132.8
26 123.4 123.0 135.6 130.2 113.0
28 100. 4 101,2 109.6 101.9 90.0
30 68,7 70,7 73.0 62.2 69.3
32 28.4 31.9 22.4 7.2 23.5
34 -18.0 -13,2 -34,1 -61.1 -20.3
36 ~67.3 -61.8 90,1 -123.6 -53.5
38 ~119,2 -113.1 -143.4 -183,1 ~104.8
150 kw Rated Power

33 RPM
2 Blades
P = 3.8°
23024 Ajrfoil




Table I1l. Rotor Power Vs. Wind Speed
Pitch Angle: +1°

WIRD | PRANDTL | GOLDSTEIW [NO TIP-LOSS[  NASA PRESENT

SPEED|  MODEL MODEL MODEL MODEL MODEL

(MPr) | (kw) (kw) (kw) (kw) (kw) |
6 8.0 7.4 7.1 8.3 ~6.3
8 0.0 0.4 1.5 0.4 4.8
10 13.7 14.0 15.9 13.3 21.0
12 34.4 34.3 37.4 34,2 42.3
14 61,7 60. 1 64.8 61.7 68,2
16 90, 1 86,2 92.9 90.5 97.3
18 118.1 110.4 119.5 118.8 127.8
20 141.9 131,2 142,7 142.9 1479
22 160.5 149,0 162.4 161.4 163.2
24 172.4 159,2 173.0 172.5 169.2
26 176.9 162.4 177.0 174.7 170.7
28 i72.8 157.9 172.0 167.9 170.0
30 160.1 1467 158.0 150.9 155.8
32 139.0 126.1 134.6 124.6 129.8
34 113.4 102.6 103.7 90.3 114.1
36 77.1 69,5 65.2 46,9 72,3
38 35,0 31.8 19.6 8.0 0.4
150 kw Rated Power

33 RPM
2 Blades
y =3.8°
23024 Airfoil



Table IV, Rotor Power Vs. Wind Speed
Piteh Angle: 43°

WIRD | PRANDTL | GOLUSTETN N0 TIP-LOSS|  WASA PRESERT
SPEED{  MODEL MODEL MODEL MODEL MODEL
(MPH) {kw) (kw) (kw) (kw) {kw)
6 ~10,4 =105 ~10.7 -12.0 9,9
8 -2,1 2.2 -2.1 3.5 0,9
10 10.6 10,4 11.2 9.5 12.4
12 28,7 28.4 30.0 28.2 30,5
14 5242 51,7 54,7 52,9 53.6
16 79.6 79.0 83.6 82.2 80,9
18 107.6 106.6 113.6 112.9 111.6
20 134.7 133.4 143.0 142.7 143.7
22 159,2 159.4 170.0 172.0 165.0
24 182.3 180.6 195.4 196.0 185.8
26 198.6 196.6 213.6 214.1 199.6
28 208.5 208.4 224,7 226.5 199.7
30 213.6 212.0 230.2 229,0 208.7
32 209.6 208, 3 225, 9 222.8 209.3
34 203.4 202.9 212.6 213.1 184.5
36 185.1 185.6 196.9 188.2 174.4
38 159.4 164.4 167.6 155, 5 160, 5

150 kw Rated Power
33 RPM
2 Blades
v = 3,8°
23024 Airfoil
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Comparing data contained in Tables II to IV reveals that the predicted
maximum power output increases as the pitch angle is increased from -1° to
+3° Figure 3~7 was drawn in order to better understand the distinction
between pitch angle settings. It can be seen that the Targest values of the
effective angle of attack, ng, occur for negatively pitched wind turbine
blades and that the smallest oy occurs at positive pitch angles. To obtain an
idea as to how the effective angle of attack is distributed along the blade,
as calculated by the present method, op was plotted for five Tocations along
the blade (3/8 span, 1/2 span, 5/8 span, 3/4 span and 7/8 span) against wind
velocity in Figs. 3-8 to 3-11. Each figure corresponds to a particular blade
pitch angle. Reference to the four figures reveals that at any blade
location, ag increases as the wind velocity increases and that the increase is
practically linear. Moreover, it can be seen by comparison that at a given
blade Tocation and wind speed, o decreases as the pitch angle is changed from
-1° to +3° Thus, blades with negative pitch angles are “"stalled" at lower
wind velocities than are positively pitched blades.

Unfortunately the nature of this stall condition on rotating blades is
not well understood at present. In particular,the effects of the centrifugal
force on the boundary layer near the tip of the blade may, in fact, delay the
prasence of stall. It should be noted that the stall condition could be
avoided, in the operating wind speed range of the wind turbine, by appropri-
ately twisting the blade along its span. Blade twist angles may be found by

applying the computational scheme developed in the preceding section.

3.2 Single-Bladed Wind Turbine Calculations
Currently a large 5MW horizontal axis wind turbine is being designed for
use in Germany. What makes this work notable is that the machine has only

one blade that is balanced by a large counterweight on a stubby arm as
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depicted in Fig. 3-12, It is believed that for very large wind turbines the
use of a single blade reduces capital costs without much reduction in
aerodynamic efficiency.

70 test this premise, the computer program was used to compute the
aerodynamic performance of a particular one-biaded machine. In the analyses,
the counterweight was taken to be 2400 1bs and located at a radial position
25 feet from the turbine rotational axis. The counterweight and cylindrical
support spar are shown in Fige 3-13. Calculation of counterweight effect on
the performance was based on the assumptions _hat there is no circulation
around the counterweight or support spar and that the drag coefficients for
these parts are 1 and 0.5 respectively.

Performance of a one-bladed and a two-bladed rotor are compared in Figs.
3-14 and 3-15. It can be seen that at 22 mph both machines produce their
maximum power. However, the one-bladed machine produces less than half as
much power as the two-bladed machine. Furthermore, Fig. 3-15 reveals that
the two-bladed machine is aiso more efficient. Clearly, rotor power of a
one-bladed rotor can be increased, as shown in Fig. 3-16, by operating at
higher rotational velocity. This, of course, would be accomplished at the
cost of higher start-up or "cut-in" speed.

Inspection of Figs. 3-14, 3-15, and 3-16 reveals that they are not
sufficient to decide whether a single-bladed rotor wind turbine is practical
or not. The feasibility of this concept strongly depends on the local annual
wind distribution. With such wind statistical data, local annual power
output of a one-bladed rotor could be estimated. It should be mentioned that
the same annual power of a two-bladed wind turbine may be obtained for a

one-bladed turbine if diameter of this turbine is appropriately increased.
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4. CONCLUSTON

In this report, a method for the prediction of wind turbine performance
has been developeds The equations presented are fairly general: applicable
to any blade geometry or any airfoil section. Although calculations were
presented for only one and two bladed rotors, the method is applicabTe
to wind turbines having any number of blades.

The current method has been programmed on a high speed, digital computer
to permit extensive analysis. Two-dimensional airfoil data was used as input
to the programs This input data can be extended to include variations in
Reynolds number and blade surface roughness, and therefore, can enable the
computer program to better predict the performance of a blade element.
Further refinement of the computer method may be required to take into
account an expanding wake and a non-uniform wind velocity. Moreover, a more
suitable function for representing the circulation distribution than that
uséd in this investigation may be warranted. The disadvantage of the Fourier
series expansion that was used is that the computing time increases sharply
as the number of terms increases. Unfortunately, extensive comparison of
predicted wind turbine performance was not possible because of the
unavailability of accurate data. Such a comparison will be made in the
future, as soon as the data are available, and the resuits will be reported
in Volume III of this report.

Tt was predicted that large losses occur for a one-bladed wind turbine.
And, that the peak power of a two-bladed rotor is approximately 50% higher
than that of one—b}aded rotor operating at a particular rotational speed.
However, hy increasing the diameter, the same peak power ofya two-bladed
turbine may be obtained for a one~bladed turbine and may still be

economically competitive with a turbine having more blades.
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Raview of VYariocus Methods of Wind Turbine Acrodynamic Performance Calculation

The purpose of this Appendix is to briefly present some of the
theoretical background for a variety of the methods that have been used to
predict the aerodynamic performance of horizontal axis wind turbines. 1t
should be mentioned that this review is net comprehensive, for such an
undertaking would far exceed the practical limits of this work. The methods
which will be described herein are: momentum theory, blade element theory,

Glauert Vortex theory, Prandtl theory and Goldstein theory.

I. Momentum Theory
In the original, so-called, momentum theory developed by Rankine [14]
and Froude [15], momentum and energy principles are applied to a simplified
mode? that is based on the following three assumptions:
1) The thrust Toading is uniformly distributed over the proselier disk
(this implies that there are an infinite number of blades in the disk).
2) No rotation is imparted to the flow.
3) A well-defined slipstream separates the flow passing through the propeller
disk from that outside the disk.
The momentum theorem is applied to the control volume shown in Fige.
A-1 and it is found that
F=m{Vg =V2) = pAU(Vy -V2) (A-1)
In this equation, F is the axial force on the wind turbine, m is the
flow rate, Vg is the freestream velocity and the V2 is downstream velocity.
Also, density, area and velocity at the rotor disk are denoted by p, A and U,

respectively.
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I ap is the discontinuous decrease in the static pressure across the
rotor disk, then the axial force on rotor may be expressed as
F = Aap
An expression for ap can be obtained by applying Barnoulli's equation in

front of and behind the rotor disk

.1 1 2
p@+-§~pv0=p+-§—pu
1 1
Po * 5" pvz =pt ' pUz =P

Therefore, the axial force on the wind turbine is

1 2 2
FoooAap = — oAV - V,)

Uniting this equation with equation (A-1) results in
1
U= = (Vg + V2) (A-2)

Thus, the velocity of flow through the disk is the arithmetic average of the
upstream and downstream velocities.
An axial interference factor, a, is defined as the fractional change in
the freestream velocity that occurs ahead of the disk, i.e.,
Vg = U
PRI
Vo
Hence, the velocity of flow through the disk may be written
U= V(1 - a) (A-3)
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Equating equations (A-2) and (A=3) and rearranging reveals that

Vg = V v
a = -gumg = E L] WE— (A"4)
2V, 2 T

And it may be seen that when the rotor absorbs all the energy of the flow
(Vo = 0), the interference factor will have a value of 1/2.
The power absorbed by the rotor is equal to the mass flow rate times the

change in kinctic enegray of the incoming fluid, i.ee,
1 2 2
Pa = AUV - V,) (A-5)
Combining equations (A-2), (A-4) and (A-5), yields

3
P = 20AV a(l - a)2 (A-6)

It can be seen that for a given wind speed, rotor size and air density, the
power absorbed depends only on the interference factor. Hence, maximum power

dP
is produced when.a; =0, It is easy to show that this condition occurs for

1
an axial interference value of 3" Thus, from (A-6)

16 1 3 1 3
P - £ = 0,593(- LAV -7

and a power coefficient, defined as

Cp R (A-S)

2 pAvo

has a maximum value of 0.593.
If the rotation imparted to flow is included, in the analysis, the total
reduction in translational kinetic energy of the flow is

LK.E. = Power Extracted + Rotation K.E.



Therefore, in order to obtain the maximum power from the stream, it is
necessary to keep the rotational kinetic energy as small as possible.
Moreover, ﬁhe element of torque is equal to the angular momentum imparted to
the blade element in unit time. This equation for a blade element at radial

distance r, if Ry is the rotational velocity of the air, can be written as

dQ = 2ur3 ueudr (A-9)
An angular interference factor is defined as
Sy
- A-10
R (A-10)

where £ 1is the rotational velocity of the blade. Introducing equation
(A-10) into equation (A=9) yiclds

dQ = 4w3,U a‘'adr (A=11)

Using this equation along with the previous theory, allows the incremental

axial force, torque and power to be written respectively as

2
dF = 4wrbVo a(l - a)dr (A-12)
dQ = 4wr3, V(1 - a)a'adr (A-13)
dP = 4ur3 V(1 - a)a'e2dr (A-14)

It should be mentioned that momentum theory provides a good indication of

the power coefficient, but fails to furnish the reguired design data for the

rotor blades except for the limiting case of an infinite number of blades.

70



71

II. Blade Element Theory

An alternate method of analyzing the behavior of a blade consists
of directly estimating the forces experienced by the blade due to the motion
of the air. This method, generally referred to as blade element theory [9],
is based on the assumption that the aerodynamic force acting on the blade
element can be estimated as the force on a suitable airfoil of the same
cross~section in an airflow with a uniform velocity W at the same angle of
attack. And, that the force on the entire blade can be derived by summing
the contributions of all the elements along the blade. From the velocity and
force diagram for a blade element shown in Fige A=2, it can be seen that

Vo

tang = e (A=15)
re

where ¢ is the angle between the resultant velocity and free stream velocity.

In addition, the incremental axial force and torque are

1

dF = — NcW2(Cpcos¢ + Cpsing)dr (A-16)
1 .

dq = —- NCW2(Cpsing - Cpcose)dr (A=17)

where ¢ is the chord of blade elfement, N is the number of blades and the 1ift

and drag coefficients are

dL

CL = T (A-18)
5 pwlc dr
dD
Cp = T (A-19)
= pwlc dr
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If the section 1ift and drag coefficients are known, the axial force and
torque can be determined by integrating equations (A-16) and (A-17) along the
blade. It should be mentioned that the blade characteristics are those of an
airfoil of the same cross~section in a two-dimensional airflow.

The unsatisfactory feature of blade element theory is that it relies on
certain airfoil characteristics which vary with aspect ratio and which depend
on the interference between the adjacent blades of a rotor. Further, this
theory using airfoil data corresponding to a moderate blade aspact ratio, has
been found to properly represent observed behavior of a propeller, but fails
to provide accurate numerical results [9]. To improve the accuracy of blade
element theory it has been suggested, [9], that the resultant velocity of the
bladé should be estimated in terms of modified velocities such as those that
were determined by the momentum theory. The combined momentum-blade element
theory equations are similar to those of the Glauert Vortex theory, [16]

which will be discussed in the following section.

III. Glauert Vortex Theory

Glauert Vortex Theory is based on the assumption that trailing
vortices emanate from the trailing edge of rotating blades and form helical
vortex sheets that pass downstream. The interference velocity experienced by
the blades is calculated as the induced velocity of this vortex system on any
blade element. The calculation of these induced velocities is simplified by
assuming that the rotor has an infinite number of blades. This assumption
removes the complexity associated with the periodicity of the flow and
permits the momentum theory to be directly used to evaluate the interference
velocities. For an element of blade éhown in Fig. A-3
Vo(l - a)

er(l + a')

W sing

W cos¢



Fig. A—3 Force and velocity diagram for Glauert vortex theory
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Thus, the speed ratio is

where a and a' are axial and rotational interference factors respectively.
The incremental axial force and torque in non-dimensional form can be

written, using equations (A-16) and (A-17), as

o W .2
dFg = === (===} (C_ cos¢ + Cpsing) dr (A=21)
RV
g wae,r . ,
dQp = mew (==} (==)(CL sing - Cpcocy) dr (A=22)
Vo R
where
dF
ch T eec————" (A—ZB)
2. 2
p(mR ) V
)
dq
dQg = e (A-24)

2.2
p(WR YV R
)

and o, solidity ratio, is defined as
Ne

5 e (An25
° T 7R (A~25)

In order to solve equations (A~21) and (A-22), ¢, and the interference factors
must first be determined. As an aid to this process, it may be assumed that
theré is an infinite number of blades, thus, momentum theory equations can be
directly applied. In addition, if the rotation in the slipstream is neglected
the following relationship is obtained from (A-12), (A-21) and (A-23)

a o (C, cosp + Cp sing)

s (A~26)
1-a 4 siny
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wheve o, local solidity, is defined as
Ng

2uy
Moraover, equating (A-13) with the element of torque obtained by combining
(A-22) and (A-24), it is easy to show that

' o (CL siny = Cp cos¢)
LA S (a-27)

1-a 4 sino coss

These equations strictly apply to a rotor with a large number of blades
since the momentum theory equations have been employeds An approximate
method of correcting equations (A-26) and (A-27) to account for a rotor with
a small number of blades is analogous to that used by Prandtl [171.
According to that method, the distribution of vortex strength over the blade
is related to the shape and motion of the airscrew. The relation of the
distribution of vortex strength to the velocity field produced by it has been
determined by Goldstein [10] for optimum loading. It should alse be mentioned
that the Glauert Vortex theory does not account for the loss of 1ift toward
the tips of the blades. Howaver, for this theory the concept of an effective

radius may be used to account for this loss.

IV. Prandtl Theory

For the optimum circulation condition, the vortex sheet is assumed
to he a rigid helical surface moving backward with constant velocity [181.
Near the boundany of the surface there is flow around the edges of the vortex
sheet and thus, the flow acquires an important radial component of velocity.
Prandtl approximated the effect of this radial flow by replacing the helical

vortex system, shown in Fig. A-4, with a series of parallel lines at a
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regular gap S and extending infinitely to the left as shown in Fig. A-b. The
gap S represents the novmal distance, at the boundary of the siipstream,
hetween the successive vortex sheets and can be written as

2uR Ag

S T wwmem  emomomermmcs— A"28\
N (1w a2)L/2 (A-28)
0

where

Prandt? showed that if the rigid vortex system moves downward with a
velocity wy, the mean downward velocity on the line PPy at a distance b from
the edge of the lines (Fig. A-H) becomes

2 -1 -nb/$
V = ey C0s (e
Letting

v 2 -1 =nh/$
o = w—— 00§ (@
LIy w

2l

FE

F' can be interpreted as the fraction of velocity wy which is imparted to the
flow of section P'P1. In the corresponding propeller analogy then F' is

defined as
F' = emee c0s (e ) (A-29)
where

uh N R=r :
f 2 wwom 2 e . (A—SO)




Thus, F' is a reduction factor which must be applied to the momentum cquation
for the flow at radius r; since it represents the fact that oaly a fraction,
F's of the fluid between successive sheets of the slipstream receives the
full effect of these sheats [91. Applying this correction to the earlier

analysis of momentum theory i.e., equations (A-12) and (A-13) produces

dF = 4mwpv§ a(l-a)F'dr

dq = 4ﬁr'39V0(1-a)a'52 Fldr

Nov: cor hining these equations with those obtained in the blade c¢lement theory

{e@os equations (A-16) and (A-17) results in

a o (CL cosg + Cp sing)
1-a AF'  sino

(A-31)
a' o (CL sing -~ Cp cuse)

4]

1-a 4F ' sing cosd

Furthermore, due to the radial tlow near the boundary of the slipstream,
there is a drop of circulation which can be represented by an equivalent
rotor with infinite number of blades but having the same drag. This
equivalent radius of this rotor is given in [9] as

Re 1.386 Ag

— =1 A-33
R N (1 +a2)i/2 (A-33)
0
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V. Goldstein Theory

Goldstein [10] solved the problem of potential flow past a body
consisting of a finite number of coaxial helicoids of infinite length, but
finite vadius, moving through an inviscid fluid with constant velocity.
Further, the fluid motion is assumed to be irrotational. The results are
applied to the case of an ideal airscrew having a finite number of blades and
a particular distribution of circulation along the blade for small values
of thrust. Goldstein [10] specificclly considered Betz's optimum condition
18] corresponding to a rigid helicoid. The essential result of Goldstein's
calculation is the determination of the strength of the helical vortex system
as a function of radius. If I is the circuiation around 2 cliosed circuit
cutting a helicoid at radius r and enclosing the part of the surface outside
that radius, then I' is equal to the discontinuity of the velocity potential
across the helicoidal surface at radius v, [9]s Also, --g% » 15 equal to the
strength of the vortex sheet or equal to the discontinuity in the radial
component velocity up through the fluide The airscrew surface which was

considered by Goldstein is defined as

8 -22/V=00r , 0<r<R (A-34)
where r, © and z are cylindrical coordinates. The axis Z is alony the axis

of the airscrew surface. Using the following coordinate transformation

Qr
v
G
and
Qz
£ =0 " (A-36)

Laplace's equation, namely v2 = 0, in cylindrical coo-dinates can be
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In reference [191, it is shown that the velocity of the air relative to free
stream velocity between successive sheets at a large distance behind the
rotor is normal to the vortex sheets. Now, if uy and ug are the axial and
circumferential components of velocity, their vectorial sum close to the

surface is equal to the component velocity of the surface normal to itself

1.@0’
Wg COS¢ = Uz COSO = ug Sing
or
3% 20 (A-38)
Wo COSY = === COSY = =we §in -
0 b Y o e ¢ !

for E=0ormand 0 <r £R

where vy is the velocity of the surface and ¢ is the helix angle.
Noting that

Vo

tang =-§;

and using this equation together with equations (A-35) and (A-36), it can be



shown that

o0 m,,z A=39
“a_é o 1 o+ uz ( i} )

for E =0 orw, and 0 < r <R

In addition to satisfying equation (A-39), ¢ must be a single-valued
function of position and its derivative must vanish when r is infinite.
'Furthermore, 9 must be continuous everywhere except at the screw surface.
Goldstein has solved this probiem and the solution for the circulation
agistribution afong the blade for any number of blades is given in

[9] as

@

e w 8 ", zme1 ()
2mag¥y ) + 1l T om0 (2ml)

oy

2 I w172 Ny,
2 Z N (m+1/2) 1) (A-20)

=
PIRY
KN
=
N

W0 N(me1s2) (WITE N,

where 1 functions are the modified Bessel functions and the F functions are

computed from
ul

T INTY (1) R IR——— r1/2 N A-41
N, 2me1 T 1’N(HW1/2§m /2 Nu) (A-41)

The T functions appearing in equation (A-41) can be calculated from
47 (n) 1674 (n)

T (mF17Z Ny = rg(n
1#(nt1/2) N T LR eyt

oo (A-82)

&2
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where ‘
u®
fo @ wm— (A<43)
1+l
. I d dtp
2r © - () (A-44)
1 +u2 d, du
50 that
Ty = 4142(1 - uz) / (1 + ;12)4 (A-45)
T =162 {1-142+21,4 406} 71+ 2) (A-46)

Goldstein defined a non-dimensional circulation factor as

Nre NP l
2mgyg  2mwgr  tand

R =

(A-47)

This factor was calculated and plotted [10].

Lock [19] applied Goldstein's solution without restriction to an
arbitrary circulation distribution in order to obtain the interference
velocities instead of following the standard formula of the Glauert Vortex
theory [16]. He showed that the axial and circumferential components of the
interference velocity at the rotor plane differs from those of Glauert vortex
theory by a factor .ng.f, if the helix angle in both cases is assumed to be
the same. Applying this factor, Lock modified the Glauert Vortex method for

the case of a small number of blades.
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