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PREFACE 

The dynamic space research programs of the Soviet Union and other 
countries, culminating in the launching of artificial satellites, space 
probes, and automatic interplanetary stations, have naturally resulted 
in a proliferation of various publications dealing with the theory of flight 
of space vehicles of all kinds. The great majority of these publications 
a re  short papers scattered in different periodicals, each discussing some 
limited aspect of the theory. Very few works have been published which 
present the theory of flight of artificial Earth satellites (or  at least some 
of its major subdivisions) on a level suitable for the solution of practical 
problems. 
since an ever increasing number of scientists and engineers in different 
branches of science and technology come into direct contact with fundamental 
problems of the theory of satellite dynamics. Furthermore, the elements 
of the theory of flight of space vehicles have by now been included in the 
curricula of some institutes of higher education. 

The present book is an attempt to present the reader withja systematic 
treatment of the fundamental propositions of one of the principal subdivi- 
sions of the general theory of flight of artificial heavenly bodies, the theory 
of flight of artificial Earth satellites. 
which should help the reader  to visualize [the general rules governing the 
coast of a satellite with its engines turned-off. Continuity of presentation 
necessitated the inclusion of some chapters which a r e  normally regarded 
a s  the subject matter of the classical celestial mechanics (the theory of 
unperturbed Kepler motion, derivation of the differential equations of 
perturbed motion in osculating elements). The bulk of the book, however, 
is concerned with various problems which a re  hardly ever touched upon 
in conventional textbooks, but which a re  nevertheless of great importance 
in the theory of flight of artificial-Earth satellites. In this group we have 
the motion of a satellite in circular and nearly circular orbits; analysis 
of the alternative trajectories through two given points in space; the effect 
of initial firing conditions on the elements of an elliptical orbit; the effect 
of the Earth 's  flattening and aerodynamic drag on satellite motion; the 
influence of lunisolar perturbations on satellite orbits. 

The motion of satellites in circular and nearly circular orbits constitutes 
the main point of interest in the book. These orbits a re  highly significant in 
the actual practice of satellite launching. The results obtained for circular 
and nearly circular motion a re  both simple and visual, greatly contributing 
to  an overall understanding of the general laws of motion of artificial Earth 
satellites. It should be also kept in mind that many of the general relations 
describing elliptical motion cannot be used in the treatment of circular and 
nearly circular orbits without first being appropriately modified. 

The need for  a systematic exposition of this kind is very acute, 

The main emphasis is on;%he relations 
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INTR OD UC TION 

The theory of flight of artificial celestial bodies is closely related to 
classical celestial mechanics (or  theoretical astronomy, a s  it is often 
called), one of the oldest and most highly developed branches of science. 
The equations which describe the coast of an artificial space vehicle (i. e., 
its flight with the engines turned off) a r e  in principle identical with the 
equations of motion of natural celestial bodies. The theory of flight of 
artificial space vehicles therefore freely draws upon the results originally 
derived in classical celestial mechanics. 

However, the scope of the theory of flight of artificial space vehicle 
and the methods applied for the solution of specific problems a re  inherently 
different from those of the classical celestial mechanics. Indeed, the 
latter is essentially a contemplative science, and its principal aim is to 
determine and to study the laws of motion of existing heavenly bodies. 
theory of flight of artificial space vehicle, on the other hand, is an active 
engineering science which is concerned with the solution of the following 
principal problems : 

The 

(a) choice of optimal orbits and trajectories; 
(b) determination of existing orbits; 
(c) calculation of midcourse corrections which change the established orbit. 
Of the three problems above, only the second is common for both 

celestial mechanics and the theory of flight of artificial space vehicles. 
But even within this category the difference in approach between the two 
disciplines is pronounced. Classical celestial mechanics is primarily 
concerned with stationary orbits which have existed for a long time. Each 
orbit is investigated in its own right, a s  an independent phenomenon. The 
determination of these orbits extends over considerable periods of t ime, ,  
often taking a s  much a s  a few years. The artificial satellites, on the other 
hand, once launched move in nonstationary, short-lived orbits. 

For  example, most of the artificial Earth satellites a re  impacted after 
a comparatively short period (typically a few months o r  years). 
due mainly to the effect of air drag and the lunisolar gravitational pertur- 
bations. 
complex and rapidly changing orbits. 
therefore be completed in a very short time. Furthermore, a particular 
orbit is of no significance in itself: it is analyzed only from the viewpoint 
of the specific mission of the artificial space vehicle which moves in it. 

A characteristic feature of the theory of flight of artificial space vehicles 
is that there  we are  always dealing with a great variety of alternative orbits 
trying to establish the optimal trajectory for the particular object that we 
have in mind. This involves the rapid solution of many laborious equations. 
A l l  exact computations in the theory of flight of artificial space vehicles 
a re  therefore normally made on high-speed electronic computers, which 

This is 

The theory of flight of artificial space vehicles thus operates with 
The orbital calculations should 
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integrate numerically a fairly complete set of equations of motion of the 
space vehicle. 

trajectory from a multiparametric family of allowed orbits. 
approximate relations should be found which permit rapid analysis of a 
variety of alternatives and help to visualize the effect of the principal 
parameters on the motion of the satellite. These relations reduce the 
number of parameters to be examined to a minimum and essentially 
res t r ic t  the allowed region of their variation. It is only after these simpli- 
fications that one may profitably proceed with exact calculations. 

We see from the preceding that the following two approaches should 
be adopted in the theory of flight of artificial space vehicles: development 
of approximate methods of rapid and graphic analysis of the various factors 
influencing the motion of the vehicle and creation of exact numerical methods 
of orbit determination. 

either purpose, since, on the one hand, they a re  too abstract and formalistic 
and, on the other hand, they a re  not adapted for computer work. 

mentioned above. 
which permit simple and graphic evaluation of the effect of various factors 
on the motion of artificial Earth satellites. 

Speed of computations, however, is not enough for  selecting the optimal 
Simple 

The classical methods of celestial mechanics a re  often inadequate for  

The present book is devoted entirely to the first of the two aspects 
Approximate formulas and techniques a re  discussed 
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Chapter 1 

MOTION IN CIRCULAR ORBITS 

1.1. STATEMENT OF THE PROBLEM 
AND PRINCIPAL RELATIONS 

Many of the artificial Earth satellites move in orbits which a re  close 
to circular. 
from the theory of circular o r  nearly circular motion, which is most 
illuminating a s  regards the general conclusions. 
is developed in the present chapter. Here we shall deal with unperturbed 
circular motion of a satellite. 
perturbations of circular motion and describe the almost circular motion 
resulting from these perturbations. 

In our analysis of the unperturbed circular motion, we shall proceed 
from the following simplifying assumptions. 

1. The Earth is a sphere of radius 

Some of the principal features of their flight can be derived 

It is this theory which 

In Chapters 2 and 3 we shall consider various 

R -6371 km. (1.1) 

2 .  
satellite. 

3 .  
center, and its magnitude g is defined by Newton's formula 

The Earth's gravitational pull is the only driving force on the 

The gravitational acceleration is invariably directed to the Earth's 

( 1.2) 
g=- c 

rz ' 

where r is the distance of the satellite from the Earth 's  center, j~ a 
coefficient equal to the gravitational constant multiplied by the Earth's mass ,  
With sufficient accuracy, we may take 

p=3.986. los km3/sec2. ( 1 . 3 )  

More exact values of the coefficients defining the terrestr ia l  field 

4. 

Let re, be the velocity of the satellite in a circular orbit of radius r ;  

of gravity wi l l  be given in Chapter 12. 

of its initial velocity) ensures a circular orbit. 

we call it the c i r c u 1 a r v e 1 o c i t  y of the satellite. 
and expression (1.2) above, we have 

The satellite's injection velocity (the magnitude and the direction 

From assumption 2 
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and 

w -  fi. 
The time required by the satellite to complete one revolution around the 

Earth is called the o r b i t a l  p e r i o d ,  or the p e r i o d  of  r e v o l u t i o n  
of the satellite, P .  Clearly 

The circular velocity w of a satellite and its orbital period P a re  thus 
functions of the distance r from the Earth's center, or equivalently of 
the flight altitude of the satellite above the surface of the Earth, 

h = r -  R. 

As the flight altitude h increases, the circular velocity w decreases and 
the orbital period P becomes longer. Figure 1.1 plots the parameters w 
and P vs. h .  We see from the graphs that for low-flying satellites, w and 
P vary between comparatively narrow limits. For h<2000 km, the orbital 
period P does not exceed 2 h r s  7 min, and the circular velocity does not 
drop below 6.9 km/sec.  
that prolonged existence of a satellite at heights h< 100 - 150 km is virtually 
impossible (on account of the rapidly increasing a i r  resistance). 
flight altitudes characterize the minimum allowed orbital period Pm@87 min 
and the maximum circular velocity w,,,,,=7.85 km/sec. 
orbiting at altitudes h<2000 km, the orbital period thus varies from 1 h r  27 m h  
to 2 h r s  7 min, and the flight velocity from 6.9 to 7.85 kmlsec.  

On the other hand, we shall show in the following 

These 

For  satellites 

FIGURE 1.1. The orbital period P and the circular flight velocity w vs. 
the height h of the circular orbit. 
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Further increase in flight altitude produces a monotonic r i se  in orbital 

If a satellite with this orbital period is launched along the equator 
period. In particular, for  h= 36,000 km, the orbital period is one sidereal 
day. 
in the direction of the Earth's spin, it wi l l  remain "hanging" above one 
point of the Earth's surface. 

Let us now calculate the total mechanical energy Q which should be 
imparted per unit mass  of the satellite in order  to launch it into circular 
orbit from the Earth's surface. Applying relations (1.2) and (1.4), we can 
easily derive the following expressions for the kinetic Qk and the potential 
Q, energy per unit mass: 

The total energy per unit mass  of the satellite is 

(1.7) 

The total mechanical energy of a satellite in circular orbit increases with 
the distance from the Earth's surface (although the flight velocity, and 
therefore the kinetic energy, both decrease). As the orbit recedes to 
infinity, its energy approaches a constant limit 

Q,=", R 

From equality (1.4) we see that in this case 101= 0, i. e., the entire 

A satellite launched from the surface of the Earth wi l l  have the energy 
mechanical energy of the satellite is concentrated a s  potential energy. 

Q- if  it is fired with the initial velocity 

where WR is the circular velocity of the satellite for h = 0, i. e.,  for r = R  
(this case, a s  we have previously observed, is unfeasible in practice, 
but numerically w,%7.9 km/sec). 

velocity VR on the Earth 's  surface wi l l  overcome the Earth's gravitational 
pull escaping to infinity along a p a r a b  o 1 i c trajectory. 
VR=11.2km/sec is called the e s c a p e  (o r  p a r a b o l i c )  v e l o c i t y .  

satellite traveling in a circular orbit a s  its flight altitude varies. 
Differentiating (1.7) and applying (1.2), we find 

In what follows we shall show that any projectile propelled with an initial 

The parameter 

In conclusion, let us  estimate the rate of change in the energy of a 

(1.10) 

We shall show in the following that a close satellite constantly loses 
height due to friction with the upper atmosphere. Its mechanical energy is 
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converted to heat. 
released as  the satellite drops by Ah can be evaluated from the expression 

From (1.10) it follows that the thermal energy AT 

where G is the weight of the satellite, and go the gravitational acceleration 
at the surface of the Earth. 
AT< 500 kgmm1.2 kcal. 

comparatively slowly due to atmospheric drag. The greater part of the 
released heat is therefore dissipated. The temperature of the satellite 
hardly changes, o r  changes very slowly as the satellite decelerates and 
drops toward the Earth 's  surface. Abrupt heating occurs only at the very 
last stages of flight, when the satellite enters the dense atmosphere and 
s ta r t s  falling rapidly. 

Taking G =  1 kg and Ah= 1 km, we have 

It is shown in Chapter 14 that the flight altitude of a satellite diminishes 

1.2. SPACE MOTION IN A CIRCULAR ORBIT 

We know from theoretical mechanics that in virtue of our assumption 
of a central gravitational field, the satellite orbits in one plane. 
this plane the o r b  i t a 1 p 1 a n e  of the satellite (it will be shown later on 
that the noncentral components of the Earth's gravitational field produce 
a continuous variation in the orientation of the orbital plane). 

We call 

FIGURE 1.2. The elements defining the space motion 
of a satellite in a circular orbit. 

The line of intersection of the orbital plane with the Earth's equatorial 
plane is called the l i n e  of  n o d e s  . The point where the orbit meets the 
equatorial plane a s  the satellite moves from south to north is the a s c e n d i n g  
n o d  e a .  
Earth's center) is the d e s c e n d i n g  n o d e  a (F igure  1.2) .  

The diametrically opposite point of the orbit (relative to the 
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The location of the ascending node is specified by the angle between the 
line OQ and a certain fixed direction in the equatorial plane. This angle 
is called the l o n g i t u d e  of  t h e  a s c e n d i n g  n o d e ;  it is denoted by 
the same symbol Q. The longitude Q is generalIy reckoned counterclockwise 
(viewing from the direction of the north pole) from the axis through the 
point of vernal equinox y (also known as  the first point in Aries). 
definition is adopted, the longitude of the ascending node is equal to the 
right ascension of the point 9 191. 

The second angle defining the orientation of the orbit is the angle i 
between the equatorial and the orbital planes: this is the i n  c 1 i n  a t  i o n of  
t h e  o r b i t  (see Figure 1.2). The apex of the angle i is the ascending 
node Q, and th is angle is reckoned counterclockwise from the eastern 
direction on the equator. 
(when the orbital plane has rotated through an angle i>n, the ascending 
and the descending nodes a re  switched). 
to west-east motion of the satellite, and the range n / 2  < i <  T corresponds 
to east-west motion. 

The position D of the satellite in orbit is defined by the angle 11 between 
the lines Oq and OD. It is reckoned in the direction of satellite's flight. 
Since the flight velocity of a satellite in a circular orbit is constant, we have 

If this 

The inclination i of the orbit varies from 0 to T 

The range 0 <l<  n / 2  corresponds 

2% 
U - 7 ( t  - tn), (1.11) 

where t is the epoch, t ,  the time of nodal passage of the satellite. 

center fully define the satellite's position in space. 
is the case i =  0 (or  a), since here the orbit is coplanar with the equator, 
and the node is indetermiaate. 
and the angles u a re  reckoned from the axis Or. 

As an example, let us  find the position of a satellite in a spherical 
system of coordinates rab, where u is the right ascension of the satellite, 
i. e., the angle between the line Or from the Earth's center to  the point 
of vernal equinox and the meridianal plane through the satellite (this angle 
is reckoned to the east from the point r), and 8 is the declination, i. e., 
the angle between the line OD and the equatorial plane (positive angles 
a re  reckoned to the north from the equator). From the spherical right 
triangle 6/DD'(see Figure l . Z ) ,  w e  have 

The angles Q, i, u and the distance r of the satellite from the Earth's 
The only exception 

To avoid this ambiguity, we take Q= 0, 

I a = Q, + arctg (tg u cos i ) ,  
8 = arcsin (sin u sin i). 

(1.12) 

From (1.12) we see that a s  the satellite moves in its orbit, the angle a 
continuously runs from 0 to Zn, while 21 varies between the limits 

(1.13) 

In many cases, the position of the satellite can be conveniently determined 
in a r ight-hnd rectangular f rame Oxyz, where the axis 0% points along the 
Earth's spin axis, and Oxis directed to the point of vernal equinox (see 
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Figure 1.2). 
sphere which has the orbit as one of its great circles. 
triangles A D Q ,  E D Q ,  and CDQ, we have 

Let A ,  E ,  and C be the intersection points of the axes with the 
From the spherical 

COS AX= COS Q, cos u -sin sin u cos i, 

cos E% = sin Q, cos u + cos Q sin u cos i, 

cos ~2 i  = sin u sin i ,  

whence 
x= r (cos Q cos u - sin Q sin u cos i), 
y = t (sin S?, cos u + cos Q sin u cos i), 
z = r sin u sin i, 

vx=i=vr(cos s?, cos u-sin s?, sin ucos i)- 
- v,(cos Q sin u+ sin Q, cos u cos i), 

vy =ti = vr(sin Q, cos n+cos 9 sin u cos i) - 
- v,(sin Q, sin u -cos Q, cos u cos i), 

v,=i= vr sin u sin i +vu cos u sin i, 

(1.14) 

where x ,  y, z are  the coordinates of the satellite, r the radius of the orbit, 
uxr uy, u2 the projections of the current velocity vector on the coordinate axes, 
u,=i and uU=riL are  the projections of this vector on the radius r and the 
in-plane normal to this radius, respectively. Fo r  a circular orbit, 

u,=o, u,=w. 

From (1.4), (1.5), ( l . l l ) ,  and (1.14) it follows that the position and the 
velocity of a satellite in a circular orbit can be determined at any time 
if the following four parameters a re  known: the longitude Q of the ascending 
node, the inclination i of the orbit, the time t ,  of nodal passage, and the 
orbital period P (or  the radius r of the orbit). These parameters, which 
fully describe a circular orbit, wi l l  be called the o r b it  a 1 e 1 e m e n t s . 
Note that motion in circular orbit is a particular case of space motion of a 
point mass  in a given force field. This general motion, a s  we know, is 
described by a sixth-order system of ordinary differential equations, and 
it is therefore defined by six independent parameters (e .  g., the initial 
conditions). In our case, the two missing parameters a re  derived from 
the conditions of circular orbit. The flight velocity is determined from 
(1.4), and the direction of the velocity vector is found from the condition 
that it is directed at right angles to the vertical at the given point oftheorbit. 

1.3. MOTION RELATIVE TO THE ROTATING EARTH 

The foregoing relations define the motion of a satellite relative to a 
fixed ("absolute") frame of reference. 
is more concerned with the motion relative to the geocentric system of 
axes which rotates with the Earth. We therefore introduce a spherical 
system of coordinates hBL., where h is the flight altitude of the satellite 

The earthbound observer, however, 

6 



above the Earth's surface, B the geocentric latitude of the point D occupied 
by the satellite at the given time, and L the longitude of this point to the 
east from the Greenwich meridian. Let Ai (see Figure 1.2) be the point 
where the Greenwich meridian meets the equator, and S the angle AOAi. 
Note that this angle is equal to the sidereal time on the Greenwich meridian 
191, and it can be determined from the relation 

where So is the sidereal time at a certain Greenwich midnight (according to 
the Astronomical Almanac), W =  7.29211 . l o m 5  sec-l is the angular velocity 
of the Earth 's  spin, and t the time which has elapsed from that standard 
midnight. 

Applying this equality, we write 

h= r - 8 ,  R = 6 ,  L=a-(S,,+Qt).  (1.15) 

From (1.15), making use of (1.11) and (1.12), we can plot the projection 
o€ the satellite's orbit on the surface of the Earth (i. e., the locus of ground 
points where the satellite is observed in zenith). This projection is called 
the g r o u n d  t r a c k  of t h e  s a t e l l i t e .  Its shape is entirely specified 
by the parameters i and P. 
( a  and tn)  only produces a certain displacement of the ground track in 
latitude, and also shifts the satellite's projection along the track. 

Any variation in the other orbital elements 

6. P=tM min 
t -65' 

FIGURE 1.3. The ground track of a satellite moving in a circular 
orbit with P = 100 min and i= 65'. 

Figures 1.3-1.7 depict various ground tracks. The abscissa marks the 
longitude of the satellite's projection on the ground, and the ordinate gives 
the latitude. 
orbital period P= 100 min and inclination i =  65". 
the projection of the first circuit of revolution (a circuit is the part of the 
orbit corresponding to one complete revolution of the satellite around the 
Ea-th; the origin of each circuit is identified with the passage of the satellite 

Figure 1.3 shows the ground track of a satellite with an 
The bold trajectory is 
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across  the equator). 
the last B points of this circuit is equal to the angle through which the Earth 
rotates during one revolution. 

The distance in longitude between the first A and 

It is found from the equality 

(1.16) 

where P ,  is the sidereal day 191. 

l o n g i t u d e  d u r i n g  o n e  c i r c u i t  of  r e v o l u t i o n .  Thisdisplacement 
is reckoned from east to west, i. e.,  in the direction of decreasing eastern 
longitude. 

defined by (1.16). 
orbital plane in the Earth 's  noncentral field of gravity. 
in the following that the resulting relative change in A L  does not exceed 

All the subsequent circuits of the ground track can be obtained by 
successively moving the first track from east  to west by amounts of AL. 
In Figure 1.3 the upper-row figures a re  the numbers of the ascending 
circuit branches (i. e., the parts of the corresponding circuits with the 
satellite traveling from south to north), while the lower-row figures 
a re  the numbers of the descending branches (with the satellite moving from 
north to south). 

The distance AL is the d i s p l a c e m e n t  o f  t h e  s a t e l l i t e  i n  

Note that the actual AL is somewhat different from the displacement 
This is attributable to the continuous movement of the 

It wi l l  be shown 

1--1.5%. 

Let N be the nearest whole number corresponding to the formula 

(1.17) 

For  the case depicted in Figure 1.3, N = 14. From (1.17) it follows 
that the satellite completes N circuits approximately in one day. N is 
therefore called the d i u  r n a 1 n u m b  e r o f c i r c u i t  s . For low-altitude 
satellites (lr<2000km), the diurnal circuit number varies from 1 2  to 17. 
At the beginning of circuit N+1, (point C in Figure 1.3), the satellite is 
clearly nearest to its point of origin A .  
the points A and C is the d i u r n a l  d i s p l a c e m e n t  o f  t h e  o r b i t  
AhLd; it is calculated from the equality 

The distance in longitude between 

AL d= 2n - NAL. 

Positive ALd correspond to increasing eastern longitude, and negative 
From the definition of N, we have to decreasing eastern longitude. 

All the circuits from N+ 1 to 2N, inclusive, can obviously be obtained 
from the first N circuits if these a re  displaced in longitude by ALd. An 
additional displacement by the same amount gives the satellite circuits 

from 2 N +  1 to 3N, etc. If the ratio $ is an integer, we have 
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ALd= 0, and the satellite returns to the point of origin approximately* after 

one day. If this ratio is a rational fraction 

2n n 
AL m' 
-=- 

where n and m are  whole numbers, the satellite returns to the point of origin 
having completed n circuits, i. e., approximately after m days. 

2n In the general case of an irrational the satellite never returns to the 

point of origin. 
the latitudes 

The ground track eventually covers the entire belt between 

- - i , < ~ , < i  for  o< . i<+ ,  

i-n<B,<n--i  for ; , < i < x .  

The ground track shown in Figure 1.3 corresponds to a comparatively 
small orbital period ( P K 0 . 5  Ps). If the orbital period is increased 
substantially, the ground track geometry changes. 
depict ground tracks for the same inclination i =  65" (west-east flight) 
and comparatively long orbital periods. 
the ground track of the first circuit of revolution with A L = n ( P w 0 . 5 P s ) .  
Figure S.5 is the ground track of several orbital circuits with P= 20 hrs .  
The displacement per circuit in this case lies in the interval 

Figures 1.4 - 1 .7  

In Figure 1.4, the curve A B  is 

n<AL<2n, 

and, a s  we see from Figure 1.5, the terminal point B of the first circuit 
is to the east of the point of origin A. 

For the ground track in Figure 1.6 (orbital period P= 30hrs), we have 

In this case the orbit moves from east to west ( a s  for small orbital 

As the orbital period is further increased, the northern and the southern 
periods), but the ground tracks of the successive circuits a re  looped. 

loops of the track gradually diminish, and eventually they disappear. 
Figure 1.4, the curve A,B, is the ground track with hL=416 ( P = 2 P  ). 

track with AL=2n ( P a p s ) .  
"figure-of-eight'' track. 
the inclination i decreases. Fo r  i = 0, the track reduces to a single point. 
Note that this orbit can be realized only if the orbital period remains 
constant with a very high accuracy. Active correction of the orbit should 
therefore be continuously applied if a satellite is to remain for any length 
of time over one region. 

In 

The curve AzBa in Figure 1.4 deserves special mention: it is the ground 
We see that this satellite retraces a stationary 

This "figure-of-eight" contracts in latitude a s  

The shape &%he ground track varies, not only with the period P, but 

* The qualification "approximately" is essential, since equality (1.17) is approximate 
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45 

0 

-95 

-$a 

FIGURE 1.4. Ground tracks of satellites in circular orbits 
with I =  65' for AL = n, 2% 4% 

P=zap  
z=M 

I I I I 
-I 0 I 180 L, deg 

FIGURE 1.5. Ground track of a satellite in  a circular orbit 
with P= 20 hrs and I =  65'. 

FlGURE 1.6. Ground track of a satellite in a circular orbit 
with P=30hrs  and 1=659 
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also with the inclination i. For  east-west flight ($< l < n ) ,  we no longer 

have the characteristic eastward-moving looped tracks.  As an example, 
Figure 1.7 shows a ground track for P =  30 hrs ,  i = 115". The satellite 

45 

0 

-45 

, I .  
-30 0 90 180 1. deg 

FIGURE 1.7. The ground track of a satellite in a circular orbit 
with P = 3 0 h r s  and i=1159 

successively covers the points ABCDEF(the interval f rom A to E corresponds 
to a single circuit of revolution). Comparison of Figures i . 6  and 1.7 shows 
that changing over from i =  65" to i= 115" = 180" - 65' radically alters the 
ground track of the satellite. 
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Chapter 2 

S M A L L  PERTURBATIONS OF CIRCULAR ORBITS 

2.1.  STATEMENT OF THE PROBLEM 

In Chapter 1 we considered the principal features of motion in circular 
orbit proceeding from the simplifying assumptions of Sec. 1 . l .  In reality, 
however, these assumptions a re  never satisfied exactly, so that the actual 
orbit always deviates from the ideal circular. 
by various perturbations, which fall in the following groups, 

specifying motion in circular orbit. 
These mainly 

include the aerodynamic drag in the upper atmosphere, the noncentral 
components of the Earth 's  gravitational field, the pull of the Sun, the Moon, 
and the planets, electrodynamic forces arising a s  the satellite moves in the 
Earth 's  magnetic field, solar radiation pressure.  

3.  These forces are  connected with 
the peculiarities of mass distribution in the satellite. 

The foregoing factors produce substantial distortions in the satellite 
orbit, and in some cases they may entirely change the character of motion. 
This occurs either if  the deviation in the initial conditions is excessive, 
or  i f  the perturbation forces a re  comparable with the Earth's pull (e. g., 
when the satellite enters dense atmospheric layers, approaches the Moon, 
moves through the region of space where the gravitational pull of the Sun 
balances the Earth's pull, o r  is subjected to midcourse thrust, e tc . ) .  
Small perturbation forces may also cause substantial disturbances if they 
act systematically for a sufficiently long time. However, in various cases 
which are  of considerable applied significance, the orbit is nearly circular 
despite the perturbations, and i t  can be analyzed (at least qualitatively) 
by means of the linearized equations of motion. In the present chapter 
we shall confine the discussion to this comparatively simple case. Problems 
relating to highly distorted orbits will be considered in subsequent chapters. 

The deviations are  produced 

1. 

2.  

Deviation of the initial flight conditions from the ideal conditions 

Additional forces acting on the satellite in orbit. 

Forces contributed by the payload. 

2.2.  EQUATIONS OF PERTURBED MOTION 

We shall operate in the cylindrical coordinates ruz, where r is the 
distance from the Earth 's  center to the projection of the satellite on the 
normal, unperturbed orbital plane, u the angle reckoned in the normal 
orbital plane in the direction of satellite flight from a certain fixed axis Ox, 
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z the vertical distance from the normal orbital plane to the satellite. The 
satellite, viewed in the direction of increasing , appears to  move clockwise. 
The passage of the satellite through the point with u =  0 is regarded as the 
starting time, t= 0 (Figure 2.1). 

FIGURE 2.1. Cylindrical system of coordinates connected wi th  
the satellite's position in orbit. 

By perturbing acceleration we shall mean the total acceleration caused 
by the various forces on the satGllite, with the exception of the Earth 's  
normal pull, defined in Sec. 1.1. Let S ,  T and W be the projections of the 
perturbing acceleration on the continuation of the radius-vector r ,  on the 
in-plane normal (i. e.,  the direction perpendicular to the radius-vector in 
the unperturbed normal orbital plane), and on the axis 2 ,  respectively 

(Figure 2.1). 

second order of smallness, we may write for the equations of motion of 
the satellite in cylindrical coordinates /28 /  

Then, assuming a small ratio and ignoring all terms of 

.. . 
S - g = r - ma, 

(2.1.) 

where g is the Earth 's  normal gravitational acceleration calculated from 
(1.2) .  (Dots will henceforth denote the time derivatives of scalar or vector 

As  we have previously observed, we shall only consider the case of 
small perturbing accelerations S, T ,  W (small in comparison with the 
normal gravitational acceleration g of the Earth) and small  deviations 
from circular motion (small in comparison with r and w ) .  The reciprocal 
influence of orbital perturbations on S, T, W is ignored to  terms of the 
first order  of smallness, and the perturbing accelerations a re  defined 
on this approximation a s  corresponding to the normal circular orbit, where 
the coordinates and the velocity components a r e  known functions of flight 
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time. 
the third equation, since the accelerations S and T, to te rms  of the f i rs t  
order  of smallness, do not depend on the lateral displacement z .  

The first two equations in (2.1) a re  thus integrated independently of 

Let 

r = r,, + Ar, 
V ,  =bur, 
V,  = w + Av,, 
6,, = A;,, 

v r = i  and v,=rU 

' 

be the projections of the velocity vector on the continuation of the radius- 
vector r and on the normal to the radius-vector in the unperturbed orbital 
plane. 
also substituting (1.2),  we find after simple manipulations 

Inserting these quantities in the first two equations in (2.1), and 

This set  of three differential equations in the variables I ,  o r ,  and v u  is 
not integrable in a finite form for arbitrary perturbing accelerations 
S and T (the solution of this set  for  S=?'=O will be found in Chapter4). 
To find an approximate solution of the set  (2 .2) ,  we assume that the 
principal characteristics of the satellite's motion over the relevant periods 
do not deviate much from the corresponding characteristics of motion in 
a certain circular orbit of radius ro (in the following we shall call it the 
u n p e r t u r b e d  or n o r m a l  orbit, in distinction from the p e r t u r b e d  
orbit that we seek). Let Ar, Au, Avrr and Av,, denote the variations in the 
corresponding quantities which differentiate between the normal and the 
perturbed orbits. Clearly, 

(2.3) 

where w is the velocity of the satellite in unperturbed circular orbit. 

form 
Note that for the unperturbed orbit the first equation in (2.2) takes the 

Substituting (2.3) in (2.2),  we subtract (2.4) from the f i rs t  of the three 
equations. 
may wr i t e  (to within te rms  of the first order  of smallness) 

Then, applying (1.4) and assuming small Ar, Avrr and Avu, we 

A& - 2% Am, - L2 Ar = S, 
A;,,+ I Av. = T ,  

d;-Av,=O, 
(2.5) 
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where I is the angular velocity of the satellite in normal circular orbit, 
defined a s  

(2.6) 
W a=- 
ro * 

We now have a set of three linear differential equations with constant 
coefficients in the unknowns Ar, bur, and Avu. We shall show that the 
solution of this set  reduces to the solution of one second-order linear 
differential equation and one quadrature. Take the third equation in (2.5) 

Awr=Ai. ( 2 . 7 )  

and insert it in the second equation in (2.5). Integrating, we have 

where C is a constant. 

final equation for Ar: 
Substituting (2.7) and (2.8) in the first equation in (2.5), we obtain the 

A;+ A* Ar = F, 
where 

F = 2 h  $Tdt+C + S .  io' 1 
The general solution of this equation has the form 

where A and B a re  constants. 
Applying (2.9'), we have 

(2.9) 

(2.9') 

(2.10) 

(2.11) 

we now integrate by parts the first term in the right-hand side of (2.11). 
We find t t 

1 r J  F(%) sin ( t  - 5)dE = T(5) 11 -cosh(t - E)] dg + 
0 0 

f 
2c +;IS (5) sin (t  - E ) ~ E +  (1 -cos at). 

0 
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Substituting in ( 2 . 1 0 ) ,  we have 

where 

2c 
A 5, = B --. 

(2.12) 

(2 .13)  

Let Ar,,, A U , ~ ,  and A U , , ~  be the initial values of the corresponding 
perturbations. 
constants Bland C.  
then put t = 0. 

Setting t= 0 in (2.8) and (2 .12 ) ,  we obtain expressions for the 
To find the constant A ,  we f i r s t  differentiate (2 .12 )  and 

Thus, 

(2.14) 

Substituting these constants in (2.12), we obtain a final expression for Ar; 
applying (2.7), ( 2 . 8 ) ,  and (2.14), we then find AO, and Au.. Now, taking the 
variation of u,=rri and applying (2.6), we find 

where Au is the perturbation in the coordinate u. 

and integrating, we find Au. 
integrals with the aid of the equalities 

Inserting the perturbations Au,,, Ar in the right-hand side of this equality 
Double integrals a r e  converted into simple 

, t 

+ 

Finally, to find the displacement at right angles to the orbital plane, z , 
Seeing that the second term and u z = i ,  we take the third equation in (2.1) .  

in the right-hand side of this equation is small, we substitute for  r and g 

their normal, unperturbed values ro and golk. 

(2.6), we write 

Making use of (1.4) and 
6 

i'+h?z, w. (2.15) 

Applying the general solution (2.10) of equations of this type, we obtain the 
required expressions for the perturbations z and uz .  
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To sum up, we have the following expressions for the various orbital 
perturb at ions : 

sln ht Ar = (2 - cos 5t )  Aro + Av,,+ 

~ v , o t ; J s ( ~ )  sin h o - E ) ~ E +  + 2(1-cosAt) 
h 

0 

' 2 * ( E )  [ 1  -cos A. ( t  -EE)]dg, T A 6  

Av, = h sin ii.t .Are+ cos ht .Av,,+ 2 sin hf.Av,o+ 

+ / S ( E )  cos h ( t  -E) dE+ 

+ 2 j (El sin (t - 5) dE, 

2(1-cnsJ,f) 
0 

3ht - 2 sin At  
A u = A u ~ -  Ta Are- ret Avro - 

t 
3bt - 4 sin At  

- IpI Avno - 1 [ S($) [I -cos (t -E)] dz- 

-;[ T(%)  [3k (t  - E) -4  sin A ( t  - E)]&, 
1 

0 

Aw, = - A (1 - cos A t )  Ar, - sin hf  A V , ~  - 
t 

- (1 - 2 cos ht) AV, - S ~ ( 5 )  sin A ( t  - EJ d~ - 
0 

t 

- [ T(5)  [l - 2 cos h ( t  - E ) ] &  
i 

+t/ W(E)sinh(t-E)dE, 

sin ht z= cos ht.z,+ 7 vxo+ 

0 
w, = - A sin a t .  zo + cos ht . vzo + 

+ j w (E) cos ( t  - 5) 4,. 
0 

(2.16) 

In these expressions, the extra-integral terms characterize the 
dependence of orbital perturbations on deviations in the initial conditions, 
while the integrands represent the contribution from disturbing forces 
on the satellite. 

2.3 .  SMALL INITIAL PERTURBATIONS 

To analyze the effect of small  initial perturbations Aro, A%, Auo, Avuo, zo 
and uZo, we put S=T= W=O in (2.16) and write the resulting expressions 
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in a nondimensional form: 

Here ki j  (i, j =  1, 2,. . . , 6 )  are  dimensionless coefficients defined by 

(2.17) 

, (2.18) 

where q--ht is the unperturbed u .  

groups. 

complete revolution of the satellite (i. e., a s  the angle q goes through 2n). 
A characteristic feature of these perturbations is that, for  fairly small 
initial disturbances, they do not produce a substantial change in the 
satellite's position. 

S e  c u  1 a r p e r t u r b a t  i o n s  , which increase monotonically with 
the angle cp (i. e . ,  with flight time t ) .  Even if  the initial disturbances a r e  
arbitrarily small, these perturbations wi l l  eventually cause a substantial 
displacement of the satellite. In our case, secular perturbations occur 
in the angle u only, and they a re  attributable to a variation in the satellite's 
orbital period P .  In the following we shall show that disturbing forces 
may produce secular perturbations in other coordinates also. 

From the expression for the perturbations in r we see that a change 
in the initial conditions, in general, w i l l  result in a noncircular orbit. 
The corresponding small perturbations a re  proportional to sin cp and cas q,  
It can be shown that, to te rms  of the first order  of smallness, the perturbed 
orbit is an ellipse, with one of its foci at the Earth's center (it will be 
shown in the following that the perturbed orbits resulting from a variation 
in the initial conditions a re  exact ellipses: the nearly elliptical shape of the 
orbit is a direct consequence of the solution being accurate only to te rms  
of the first order  of smallness). 

We now proceed with a more detailed analysis of the contribution from 
various initial perturbations. 

From these relations we see that the orbital perturbations fall in two 

A. P e r i o d i c  p e r t u r b a t i o n s ,  which repeat themselves after each 

B. 
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2.4. PERTURBATION O F  THE INITIAL DISTANCE OF 
THE SATELLITE FROM THE EARTH'S CENTER (ArO> 0) 

Variation in the initial radius ro produces perturbations which a re  
represented by the coefficients kti ( i =  1, 2, 3, 4). 
cause elliptical distortion of the omit ,  as  shown in Figure 2.2 a. 
point nearest to the Earth (perigee) corresponds to the initial value cp= 0, 
and the point farthest from the Earth (apogee), to q=n. 

These perturbations 
The 

The variations 

FIGURE 2.2. Perturbation of circular orbit resulting from variation 
of the initial distance to the gravitational center. 

in flight altitude in perigee A i p  and in apogee Aia  a re  given by the equalities 

(2.19) 

Radial velocity perturbation Av, varies sinusoidally, with maxima (in 
absolute value) at the points cp = n /2  and ?= 3 ~ 1 2 .  
of this perturbation is 

The peak magnitude 

(2.20) 

The perturbation Au along the orbit produces a systematic lag in the 
actual position of the satellite relative to i ts  position in unperturbed motion. 
This perturbation displays a linear secular component and a sinusoidal 
periodic component (Figure 2.2 b) . 
increases by the following amount during each revolution around the Earth: 

The displacement of the satellite 

Arc (%) = - 6 ~ s  (2.21) 
ro * 
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Hence, applying (1.5), we obtain an expression for the rate of secular 
displacement (AVq)sec of the central projection of the satellite on the normal 
orbit and for the variation of the orbital period A P :  

to 

The perturbation Avu in the longitudinal velocity varies from 

(2.22) 

(2.23) 

(2.24) 

Note that the mean in-orbit velocity perturbation (Av,),= -E Aro is not 
ro 

equal to the velocity (2.22)  of secular movement along the orbit, ( A V , + , ) ~ ~ ~ .  
This is so  because (Av,) 
vUof the satellite, while (AVq)sec represents the change in the speed of the 
satellite's projection on a normal circular orbit of radius ro. 
velocity be v g .  Clearly, 

is determined by the variation in the actualvelocity 

Let this 

Differentiating this equality and seeing that for unperturbed orbit r=ro  
and v , = w ,  we have 

Ar 
ro Av,, A v W +  - W. 

In particular, this equality is satisfied if  Ar is replaced with the mean 
value 

1 3 (Arp + AT,) = 2Aro9 Arm 

and Avu and Av,  with the preceding expressions for ( A V ~ ) ~  and (AV,&~. 

2.5. INITIAL PERTURBATION OF 
RADIAL VELOCITY ( Avro>O) 

A chacge in the initial radial velocity produces perturbations represented 
by the coefficients k i 2 ( i =  1, 2, 3, 4). 

Figure 2.3 a. 

the point with q=-. 

and in perigee is 

The orbit is distorted a s  shown in 

The apogee is at the point with q=$, and the perigee at 
3 r  
2 

The magnitude of the radial displacements in apogee 

I Ar, I = I Arpl = -$Afro. (2.25) 
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The radial velocity is proportional to coscp, and the longitudinal velocity 
to sincp. 
disturbance A v ~ .  

The peak magnitude of velocity perturbations is equal to the initial 

FIGURE 2.3. Perturbations of circular orbit resulting from 
variation of the radial velocity. 

In-orbit perturbation causes a certain lag of the satellite relative to 
i t s  position in the normal orbit. 
no secular component (Figure 2.3b). 
remains unaffected. 
orbit occurs at the point cp=n, and it is given by the equality 

This displacement is periodic, and has 
The orbital period P therefore 

The maximum displacement of the satellite along the 

Au(n)=-4*. W (2.26) 

2.6. INITIAL PERTURBATION ALONG THE ORBIT 

From (2.17) and (2.18) we see that an initial angular displacement Auo, 
rotates the entire orbit around the Earth's center through the angle Au=Au,,. 

Variation in the initial longitudinal velocity Avu0 is represented by the 
coefficients ki3 ( i =  1, 2, 3, 4). 
cp = 0, and the apogee at the point cp =n (Figure 2.4 a). 
displacement in perigee and in apogee is given by the equalities 

For  Au,o>O, the perigee is at the point 
The radial 

b P = O  and 6ra=44Av,.  (2.27) 

Radial velocity perturbation Av, varies sinusoidally. The peak magnitude 
of this perturbation is 

(2.28) 

In-orbit perturbations have both periodic and secular components 
(Figure 2.4 b). Initially, the displacement Au along the orbit has the same 
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sign a s  the original velocity perturbation Aouo. 
maximal for q= 41"24'35". 

This displacement is 
The corresponding maximum value of Au is 

Au,,, * 0.4776 %. 
The separation between the perturbed and the normal positions of the 

satellite subsequently decreases, and for cp = 73"05'32", we have Au= 0. 

FIGURE 2.4. Perturbations of circular orbit resulting from 
variation of the longitudinal velocity. 

Now the perturbed satellite s tar ts  lagging behind its normal position (for 
Auuo>O). The lag per one circuit of revolution is 

Au(2n)=--Gn* w *  (2 .29)  

Hence, by analogy with (2.22), we find the mean rate of secular movement 
of the satellite along the orbit and the change in the orbital period: 

(2 .30)  

We see that if  the initial velocity of the satellite along the orbit is 
perturbed, the satellite will eventually regress  at a rate equal to three 
times the initial velocity perturbation. Later on, we shall consider the 
energy aspects of this seemingly paradoxical phenomenon. 

The longitudinal velo2ity perturbation Anu is periodic. 
- r / 3 < ( p <  n / 3  and negative for  r / 3 < q <  5 ~ 1 3 .  
perturbation a re  

It is positive for 
The extreme values of this 

Av, (0) = Av, and Av, (n) = - ~ A v , .  (2 .31)  
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2.7. PEKTUR BATIONS AT RIGHT 
APJGLES TO THE ORBITAL PLANE 

Initial disturbances at right angles to the orbital plane a re  periodic; 
To t e rms  of the they a re  represented by the coefficients k i j  ( i , j =  5, 6). 

f irst  order  of smallness, these perturbations can be shown to reduce to 
certain.rotations of the orbital plane. 
orbital plane through a small angle Cp (Figure 2.5) around the axis MN, 

Let us  consider the rotation of the 

FIGURE 2.5.  Initial perturbations a t  right angles t o  the 
plane of circular orbit. 

making an angle cpo with the line Ox from which the angles a re  reckoned. 
Let C be a point of the unperturbed orbit whose position is specified by 
the angle COw=cp. 

velocity vector w of the satellite make angles 'p - C ~ O  and 

axis of orbit rotation MN. 
they acquire nonzero projections on the normal Oz to the unperturbed 
orbital plane; to terms of the first order of smallness, these orbit-plane 
normal components a r e  given by 

The radius-vector r of this point and the corresponding 

-J- cp--cpo with the 

As  these vectors rotate w'th the orbital plane, 

(2.32) 

Hence, applying (2.17) and (2.18), we find that the elevation zo of the satellite 
above the orbital plane corresponds to a rotation of the entire orbit around 
an axis through the points cp=s/2 and 9 = 3 ~ / 2 ;  the initial velocity 
perturbation vzo similarly corresponds to a rotation of the orbital plane 
around an axis through (o= 0 and q=a. 
orbital plane rotates around the two axes a re  given by 

The angles through which the 

(2 .33)  

To sum up, small perturbations Aro, A v ~ ,  Auo, and AvUo in the initial 

The orbital 
Small disturbances ~0 and uz0 at right 

conditions of motion distort the shape of the orbit and also cause periodic 
and secular displacement of the satellite along the orbit. 
plane, however, remains fixed. 
angles to the orbital plane alter the orientation of this plane. 
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We have already remarked that secular perturbations a re  much more 
effective than periodic perturbations and, unlike the latter, they eventually 
produce substantial inequalities in the motion of the satellite, even if  the 
initial disturbances a re  very small. As  an example, let us  consider the 
motion of a satellite in circular orbit at a height h =  630km, which 
corresponds to r = 7000 km, w = 7.5 km/sec, P =  98 min. 
and the initial position of the satellite a r e  slightly perturbed: Avo= 1 m/sec ,  

periodic and the secular displacements in the satellite's position resulting 
from variously directed initial perturbations. 

The initial velocity 

= 1 km. Table 2.1 lists the corresponding maximum magnitudes of the 

TABLE 2.1. 

Initial perturbations 

description and 
magnitude 

lnitial velocity 
perturbation 
Avo = 1 m/sec 

Initial position 
perturbat ions 
AIo =1  km 

direction 

from the Earth's 
center 

along the orbit 

at right angles 
to the orbital 
plane 

from the Earth's 
center 

along the orbit 

at right angles 
to the orbital 
plane 

Satellite displacement, km 

maximum periodic 

from the 
Earth's 
center 

along the 
orbit 

at right 
ngles to  
le orbital 

plane 

- 

- 
0.9 

- 

- 
1 

secular, 
along the orbit 

per da) 

erturbation 
of orbital 
ieriod, sec 

- 

2.3 

- 

2.5 

- 
- 

This table illustrates the relation between secular and periodic 
displacements of the satellite. 
displacements increase monotonically with flight time, whereas periodic 
deviations do not exceed the maximum values indicated in the table. 

It should be borne in mind that secular 

2.8. ALMOST CIRCULAR MOTION 

In the preceding section we have established that small perturbations 
in the initial conditions cause a certain distortion of the circular orbit. 
The motion in this distorted orbit is a l m o s t  c i r c u l a r  or n e a r l y  
c i r c u  1 a r . 
motion in the orbital plane is derived by adding to the coordinates and the 
velocity components of the unperturbed circular orbit the corrections 
calculated from the first four relations in (2 .16) ,  for  S=T=. I=O.  

It follows from the preceding that this is plane motion. The 

The 
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principal features of almost circular motion can be established from these 
relations. We introduce the concept o€ m e  a n  c i r c u 1 a r m o t i o n ,  
which is defined a s  motion in a circular orbit of some mean radius rm. 
This radius is selected s o  that the period of revolution for the mean 
circular orbit is equal to the period of revolution P for the particular 
nearly circular orbit. 

Applying (1.5), we write, to terms of the first order of smallness, 

where Po is the orbital period of the unperturbed orbit of radius to, and 

Adding up the orbital period corrections obtaining from (2.22) and (2.30), 
we find 

AP=3P($+%). 

where wo i s  the satellite's velocity in unperturbed orbit. 
Comparing this expression to the foregoing equalities, we see that 

where 
(2.34) 

(2 .35)  

is the angular velocity of the satellite in the normal orbit. 

and the angular movement of the satellite in the mean circular orbit. 
From (1.4) we have 

Let now mm=w0+Awmand urn stand respectively for the flight velocity 

1 
2 Awm= - -kh,Arm. 

Hence, making use of (2.34),  we write, to terms of the first order 
of smallness, 

(2.36) 

In a circular orbit, 

W u 4 a,+ 7 t ,  

where uo is the initial position angle. Varying this relation, we apply 
expressions (2 .34) - (2 .36) .  
orbit is furthermore assumed to satisfy the following initial condition: 

The motion of the satellite in the mean circular 
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In other words, the initial angle (u.m)o is determined by the time-independent 
terms in the right-hand side of the corresponding equation in (2.17). 
final result gives 

The 

Pvro = A h  - 2-+ rp,+ (2 -3) ro 'po = 

=hao -2 9 + (p0- 3 ~ , ,  ($+ 2). 
where cpo=Lt. 

From (2.34), (2.36), and (2.37) it follows that 

r,= r,- 2 (Ar,+ *), 
wo=w,+ (%Aro+Av,o), 
rp, = a,  - An, + 2 % + 3q0 (s + 9). 

(2.37) 

We substitute these expressions, together with the first  four equalities 
from (2.16), in the right-hand sides of the relations 

r = r, f Ar, v, = Av?,, u = +Aid, ZJ= = wo 4 Aw. 

Zero perturbing accelerations are  assumed ( S = T =  W = O ) .  In terms 
defining small periodic deviations from the mean circular motion, we take 

'po = urn= v, r, = rm, w, = w,. 

The resulting e r r o r  is of the second order  of smallness. After 
elementary manipulations, carried out to first  order of smallness, we 
obtain the following equations of almost circular motion: 

r = r,(l -e, cos cp - e2sin q), 
w, = w,(e, sin cp - e, cos cp), 
u = q~+2 (el sin cp--ee,cos cp), 

V, = w,(l f e,coscp+e,sinq), 

w r n = 6 ,  

(2.38) 

where to is the time of passage of the satellite moving in the mean circular 
orbit (we call it the m e a n  s a t e 11 i t  e ) through the point of origin u = 0, 
and the parameters ei and ez a re  expressed in terms of the initial 
perturbations Aro, Av,.,,, and Auo: 

Expressions (2.38) can be somewhat modified by substituting the 
parameters e and o from the equalities 

e, = e cos a, 

e = v m ,  o=arc tgA.  

e, = e sin o, 

el 

(2.39) 

(2.40) 
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This gives 
r = r ,  [I - e  cos ('p - 41, 

n ='p+2e sin ('p - m), 

w, = w,e sin (cp - m), 

a,=w,[l  + e  cos ('p -41. 

(2.41) 

Let o be the flight velocity of the satellite, and the angle which the 
velocity vector makes with the local horizon. Clearly (see Figure 2.1) 

Applying (2.41), we may write, to te rms  of the first order  of smallness, 

I v = w u =  w,[l + e  cos ((p - a)], 
9 = esin (cp-m). 

(2.42) 

From (2.41) and (2.42) we see  that the mean values of the principal 
characteristics of satellite rnotion in a nearly circular orbit a re  equal 
to the corresponding parameters for the mean circular orbit ( rm, u,=(p, 
W ~ = W , ~ = . ~ , ,  w,,=O, 8,=0). 

The point of the nearly circular orbit closest to the Earth (perigee) 
corresponds to q=o, and the farthest point (apogee), to cp=o+n. 
the subscripts "'p" and "a" to the values of the corresponding parameters 
in perigee and in apogee, respectively, we w r i t e  

Assigning 

(2.43) I r p = r m ( l - e ) ,  ra=rrn(l +e) ,  
v,p= a,,=O, ep=e,=o, 
~ p =  vrZp= Wm(l  +e), v,= Vua= W, (1 -e). 

The perigee point thus corresponds to maximum velocity u ,  and the 
apogee to minimum velocity. 

reaches its maximum emax=e at the point q=o+G and its minimum 

emh = -e at the point cp = o + 

the mean circular orbit is determined by the parameter e, whereas the 
position of the perigee is specified by the angle o. The parameter e is 
therefore called the e c c e n  t r i c i t  y of the orbit, and the angle w 
a r g u m e n t  of p e r i g e e .  

eccentricity of the orbit a s  a vector of magnitude e pointing along the axis 
cp=o. 

of this vector on the directions U= 0 and u= 

Figure 2.1). If the coordinate system is rotated through a certain angle y 
in the direction of motion of the satellite (which is always assumed to travel 
counterclockwise, a s  indicated by the choice of the axis Oz in Figure 2.1), 

The angle e at these points is zero. It 

3 n. 

From (2.41) and (2.42) we see that the magnitude of the deviations from 

In the analysis of nearly circular motion, it is advisable to t reat  the 

From (2.40) it follows that the parameters el and e,, are  the projections 

(the axes Ox and Oy in 
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the eccentricity components a re  transformed according to the general 
transformation formulas for a two-dimensional vector: 

el = e ,  cos y + e2 sin y, 
e; = - e,  sin y + e2 cos y, 

where e; and e; are  the projections of the eccentricity vector on the axes 
of the rotated system. 

Applying (2.38), we can derive the following simple relations among 
the parameters of satellite motion at the point cp= 0 and the components 
el and e2 of the eccentricity vector: 

r(O)==r,(l -e , ) .  ~ r ~ ( O ) = - - ' w ~ e ~ ,  

u(0) =- 2e,, u,(O) = w,(l +e,). 

To find the parameters of space motion in nearly circular orbit, relations 
(2.38) and (2.41) must be supplemented with expression (1.14). In this case, 
it is advisable to reckon the angle u from the line joining the Earth's center 
with the ascending node of the orbit; the time to in (2.38) should then be 
replaced with the time t, of nodal passage of the mean satellite. 

2.9. THE ELEMENTS OF ALMOST CIRCULAR ORBIT 

From (1.14) and (2.41) it follows that motion in nearly circular orbit 
is fully defined by the following six parameters: the mean radius r,, the 
time of mean satellite nodal passage t a ,  the eccentricity e ,  the argument 
of perigee o, the node Q. the inclination i. If these parameters a re  known, 
then the coordinates and the velocity components of the satellite at any 
epoch can be determined. These six parameters a re  therefore regarded 
a s  the e l e m e n t s  of  a l m o s t  c i r c u l a r  o r b i t .  From (2.38) we 
see that the eccentricity e and the argument of perigee o can be replaced 
with the projections ei and e2 of the eccentricity vector on two axes (in 
particular, the line of nodes and the line perpendicular to it),  
substitution is very convenient in our case. The argument of perigee w 
is expressed in terms of the ratio of two small parameters (2.40). 
some cases, even for very small initial perturbations, the perigee may 
therefore show a substantial displacement, although the distortion of the 
orbit is negligible. 
is therefore fairiy uncertain. 
orbit approaches the ideal circular orbit, for which the very concept of 
perigee is meaningless (by uncertainty in o we mean, not the mathematical 
uncertainty, which obtains for an exactly circular orbit only, but practical 
uncertainty resulting from the inevitable e r r o r s  of measurement and 
calculation: because of these e r ro r s ,  the perigee camot be pinpointed 
with any accuracy). On the other hand, small variations of the orbit a re  
always reflected in small variations of the parameters ei and e2 .  
exactly circular orbit is characterized by well defined values of the two 
projections of the eccentricity vector: ei=ez=O. The accuracy in the 
determination of these parameters therefore does not decrease a s  we 
approach the ideal circular orbit. 

This 

In 

The position of the perigee in a nearly circular orbit 
This uncertainty increases as the real  

An 
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From (2 .34)  and (2 .39)  it follows that r,, ei and ez are  linear functions 
of the initial perturbations. 
first order  of smallness, this is so for the other orbital elements ( f a  
and i )  also. 
can therefore be found by adding the contributions from the individual 
perturbations. 
small inclinations i can be eliminated by changing over from the equatorial 
plane to any other plane of reference for the definition of the orbit. 
regards the parameters e and o, they follow the rules of vector addition 
under compound perturbations. 

number of initial conditions needed to specify the motion of a point m-ass 
in a given force field, 
orbital elements from known initial conditions. 
in the right-hand rectangular system of coordinates Oxyz, shown in 
Figure 1.2. 
and let ro and go, respectively, be the initial radius-vector and the initial 
velocity vector of the satellite: 

Fo r  iS.0 it can be shown that, to terms of the 
a, 

The total distortion of the orbit under several small perturbations 

The uncertainty in the position of the node obtaining for  

AS 

The number of elements defining an almost circular orbit is equal to the 

We thus arr ive at the problem of calculating the 
This problem will  be solved 

Let D denote the position of the satellite at the epoch fS=fO, 

where x,,, yo, zo and oxo, vyo, vd are  the known initial values of the coordinates 
and the velocity components, 1, j ,  R. are  the unit vectors of the triad Oxyr. 

FIGURE 2.6. Determination of the node and the inclination 
from the initial conditions of motion. 

The orbital plane is defined a s  the plane through ro and v,,. A unit 
vector at right angles to this plane (Figure 2.6)  is correspondingly defined 
by the equality 

n=- ro x vo 
IraXvol ' 

where 

(2.44) 
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The projections of the vector n on the axes of the frame Oxgz are  
therefore given by the formulas 

(2.45) 

On the other hand, these projections can be expressed in terms of the 
angles S& and i .  
of the coordinate axes and the orbit-plane normal with a unit sphere; take 
the spherical triangles A Q N  and B Q N  (see Figure 2.6), where 

AQ = Q. B x  = $- Q, L N Q B  = 5 + i, 

To this end, let A, B, C, N stand for the intersection points 

v 

L N Q A  = + - I, 4% = $ . 

Also note that C x = i  (since the angle between the normals to two planes 
is equal to the angle between these planes). Thus, 

Y n, = COS AN = sin Q sin i, 
n, = cos BN= - cos S& sin i, 
n, =COS CN = COS i. 

v 

v 

Comparing these expressions to (2,45), we see that 

i g q = - - $ ,  c o s i = -  cs 
C '  

(2.45') 

(2.46)  

The inclination i is uniquely defined from the condition 

O<i<n. (2.47) 

To find the ascending node Q without ambiguity, note that sin i >/ 0. 
signs of sin 9 and cos Q a re  therefore those of the constants Ci and - C,, 
respectively. 

We now proceed with the determination of rm, e,, e,, tn. Firs t ,  we calculate 
the distance r,, from the initial point D to the Earth 's  center, and also the 
projections vr0 and vuOon the vector r,, and on i ts  in-plane normal. 

The 

W e  have 

The circular velocity corresponding to ro is 

wLl= 6 
and we thus have for the perturbation of the longitudinal velocity 

AgUD= w , O - ' W ~ .  

(2.48) 

(2.49) 

(2.50) 
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Applying (2.34), (2.35), and (2.39) and putting A r , = O ,  we find 

(2.51) 

where e; and e; are  the projections of the eccentricity vector on ro and at  
right angles to it. 

Making use of (1.14), we find expressions for  the angle uo between the 
line of nodes and the vector ro. Multiplying the first  equality in (1.14) by 
cos Q and the second by sin Q and adding them up, we find 

sin uo = 2 rosin i ' 
no cos &+Yo sin & 

ro 
cos 1Lo = 

Hence, making use of (2.45) and (2.45'), we find 

(2.52) 

(2.52') 

the sign of sinu,, is that of the numerator in the right-hand side of (2.52'), 
and the sign of cosu,, is that of the denominator. 

of the eccentricity vector on the line of nodes and at right angles to it: 
To find the parameters e;,  e ; ,  and u,,, we first  calculate the projections 

e, = e; cos uo - e; sin u,,, 

e,= e; sin uo+ e; cos uo. 
(2.53) 

Applying (2.38), we obtain the initial value of the angle rp (apart from te rms  
of higher order  of smallness), and the time of nodal passage of the mean 
satellite ta: 

rpo = a, - 2 (e,  sin ic,, - e, cos u,,), 

(2.54) 

The initial conditions thus uniquely specify the elements of a nearly 
circular orbit. It must be borne in mind, however, that these results a r e  

meaningful only if  the ratios &.E and * a re  small. 

is not almost circular, and the methods of the next chapter should be applied 
for its determination. 

Otherwise, the orbit 
WO WO 

2.10. TOTAL MECHANICAL ENERGY 
O F  NEARLY CIRCULAR MOTION 

Let us determine the total mechanical energy per  unit mass  for a 
satellite in nearly circular orbit. Applying the expression for the potential 
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energy (1.6), we write 

d 1 Q = T + P  (x -f). 

Substituting (2.41). (2.42), and (1.4), we obtain, to te rms  of the first order 
of smallness, 

(2.55) 1 1  
Q = lL (7i -TI * 

Comparison of this expression with (1.7) shows that the total mechanical 
energy of a satellite in nearly circular orbit is equal to the energy of the 
satellite in the mean circular orbit. 

circular motion a r e  inherently approximate. 
equations wi l l  be nstimated in what follows. 

In conclusion we should stress that all the equations describing almost 
The accuracy of these 
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Chapter 3 

PERTURBING ACCELERATIONS IN CIRCULAR 
AND NEARLY CIRCULAR ORBITS 

3 .l. IMPULSIVE PERTURBATIONS 

Perturbing accelerations are  estimated from the integral terms in the 

These expressions a r e  linear, so that (to terms of the first  order of 
right-hand sides of (2.16). 

smallness) they apply to perturbations in both circular and nearly circular 
orbits. 
mean radius of the actual nearly circular orbit) a s  the standard circular 
orbit of our calculations: there will be no growing secular deviations of the 
ideal circular orbit from the real  nearly circular one. The angular and 
the linear velocities of the circular satellite entering (2.16) are  then 
written a s  

It is advisable to take an orbit of radius r=r,(where rmis the 

(3 .1)  

where P is the orbital period of the satellite in nearly circular orbit. 
In accordance with the preceding, we put in (2.16) 

Ar,, = A V , ~  = Au" 5 Avu0 = z, = vfi = 0 (3.2) 

and proceed to consider the influence of short impulsive perturbations. 
accelerations S,  T, and W do not vanish in a small interval 

The 

t ,  --x t 4 t ,  +n, 

where ti is a certain epoch, and x a small (in comparison with the satellite's 
orbital period) quantity. 

We introduce the following notations for the total impulsive perturbing 
accelerations: 

Av,,= 'jr"Sdt. 
1,-X 

f ,+X 

AvU1= T d t ,  

Av,,= y x W d t .  

t,-X 

1,-x 
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Assuming sin h(t - t )  and cos L ( t  - 5 )  to remain constant in the relevant 
time interval, we  write ( 2 . 1 6 )  in the form 

Avr = cos (9 - n) AV,~+ 2 sin ((P - cpl) AvUlt 

8% - 1 -cos (9 -91) A u = - ~  
W 

( 3 . 3 )  

Comparison of these relations with ( 2 . 1 7 )  and ( 2 . 1 8 )  shows that impulsive 
perturbing accelerations a re  equivalent to the corresponding perturbations 
in the components of the velocity vector at the time f = f l .  
these perturbations can be analyzed on the basis of the conclusions in 
Sections 2 . 5 - 2 . 7 .  We thus arrive at the following principal results. 

An impulse Au., in the direction of increasing flight velocity 
simultaneously raises  the flight altitude. 
to potential energy, and the flight velocity decreases. 

orbit (for q ~ , + ~ n  < q < ql+-s n )  this reduction in flight velocity more than 

offsets the acceleration produced by the initial impulse. The mean flight 
velocity decreases (Au,= -Auui) ,  so that the final outcome of this impulsive 
perturbation is a lengthening of the orbital period and a growing secular 
lag of the satellite behind its position in unperturbed orbit, This seemingly 
paradoxical result is explained by the increase in the net mechanical energy 
due to the impulsive acceleration. In accordance with ( 2 . 5 5 ) ,  this leads 

to an increase in the mean orbital radius rm by an amount Arm= rm7, 

which in turn lowers the mean flight velocity w m  and raises  the orbital 

period P by an amount A P = 3 h P .  Impulsive deceleration wi l l  obviously 

produce an opposite effect. 

in the direction of their action for  cpi<q<cpi+n only. For rpl+n<cp<cpl+2n, 
the satellite is displaced in the opposite direction. 

Orbit perturbations a re  thus characterized by a peculiar retrograde 
effect: over the greater part of the orbit, the satellite is displaced against 
the direction of the impulsive perturbations. 

The nature of 

A. 
Some kinetic energy is converted 

Over most of the 
1 5 

2Avui 

W 

B. Impulses Au, and Au, at right angles to the orbit displace the satellite 

3 . 2 .  CONTINUOUS PERTURBING ACCELERATIONS 

In our analysis of continuous perturbations, we shall consider perturbing 
accelerations S, T. and W dependent on the satellite's parameters of motion 
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(position and velocity): the time I does not enter the dependences explicitly 
We also ignore the reciprocal influence of the orbital perturbations on S, T, 
and W (with secular perturbations this is possible, in general, only if the 
discussion is limited to comparatively few circuits of revolution). Under 
these simplifying assumptions, the perturbing accelerations a re  periodic 
functions of the angle 

Q = k t  (3 .4)  

and they can be conveniently expanded in Fourier ser ies :  

(3 .5)  

where St, Ti ,  Wt (is 0, 1,  2 , .  . . )  are  the expansion coefficients, and 'psi, qT1. qwi 
a re  the phase shifts of the component harmonics. 

(3 .1)  and (3 .2 ) .  Thus, 
To s.implify future manipulations, we transform (2.16) with the aid of 

where 

(3.7) 

Note that Pi is the time during which the satellite travels in orbit through 
the angle (P= 1. 
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3.3. CONSTANT PERTURBING ACCELERATIONS 

We now proceed to calculate the orbital variations produced by the first  
Setting in (3.6) terms in (3.5), i. e., by constant perturbing accelerations. 

S = S o , T = T o ,  W = W ,  and integrating, we find 

Ar(cp) = P?[So(l -cos q)+ 2T0(q, - sin q)], 
Avr(cp) = P I  [S,sincp+2To(1 -cosq)], 

(3.8) 

Aw, (9) = - PI [So (1 - cos q) + To (q - 2 sin 41, 
AZ(T) = @Wo(l - COS q), 

Ahu, (Q) = P I  W, sin cp. 

The influence of the constant perturbing accelerations can be analyzed 
from these relations. The analysis leads to the following conclusions. 

A. Constant perturbing acceleration SXSO along the radius causes 
periodic perturbation in r ,  v,, u, vu and secular perturbation ( A U ) ~ ~ ~  along 
the orbit. The maximum magnitudes of the periodic perturbations a r e  
given by 

( 3 .  9) 

where Al=rmAu is the in-orbit displacement of the satellite, w and g m  a re  
respectively the orbital velocity and the gravitational acceleration in mean 
circular orbit. 

in r and v r ,  which a re  the orbit distorting factors with constant So, a re  
equivalent to analogous perturbations arising a s  the initial longitudinal 
velocity is disturbed by an amount 

Comparison of (2.17), (2.18), and (3.9) shows that periodic perturbations 

The distorted orbit is depicted in Figure 2.4 a (the preceding refers  to 

The secular displacement of the satellite per  one circuit, A1(2n), the 
perturbation along the orbit). 

rate of this displacement ( A V & ~ ,  and the corresponding change AP in the 
orbital period can be calculated from the expressions 

~ 1 ( 2 n )  4 n ~ f  SO 

m g m  
AP=--- - -so= 2P - . 

W 

(3.10) 
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Constant radial acceleration So thus causes a certain distortion of the 
orbit, but introduces no secular perturbations along the radius. Secular 
displacement occurs only along the orbit, i. e. ,  at right angles to the line 
of action of the perturbing acceleration. 
to  changes in the mean radius and the mean flight velocity: 

This perturbation is attributable 

S SO 
g m  gm 

Arm= &So =rm -2.. , Avm= - PISo = - w  -. 

B. Constant perturbing acceleration T = T o  along the orbit causes 
periodic perturbations in r, vr, u, vu and secular perturbations (Arksec, ( A U ) ~ ~ ~ ,  
and (Au,JseC, The maximum magnitudes of the periodic perturbations a re  

(3.11) 

The secular displacement along the radius per one circuit, Ar(2n), and 
the rate of this displacement (AVr)sec, a r e  defined by 

A r  (2n) = 4nPtT0 =4nrm- 

( A T J ~ ) ~ ~ ~ =  2P,T,, = 2~ A. 
g m  

(3.12) 

The secular perturbation A1 along the orbit is proportional to the square 
of the angle rp ( o r  the flight time t = P , r p ) .  The orbital period varies 
monotonically: it is a linear function of the circuit number n. 
rate of the in-orbit secular displacement, (bo?)  m ,  the corresponding 

acceleration & [ (Av~)& the linear displacement Al(2nn)  at the end of the n-th 

circuit, the perturbation A P ( n )  in the orbital period during the n-th circuit, 
and the change 6P in the orbital period per  circuit are  given by the relations 

The mean 

--- 

6n2 (2n - 1) P: TO 
m gm 

- r T 0 = 3 ~ ( 2 n - 1 ) P - 9  - 

( 3 . 1 3 )  
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where t=P,cp is the time reckoned from injection (or  from the initial 
application of the perturbing acceleration). 

and the secular acceleration (A&)sec along the orbit a r e  given by 
The secular perturbation Av,(2n) in longitudinal velocity per circuit 

Avu (%) = - 2nP,T0 = - 2nw 

(&Jsec&g2. - TO. 
(3.14) 

~ 

d Note that AuU(2rc) and a re  not equal to and ~ [ ( A W ~ ) ~ ~ ~ ] .  

The former characterize the change in the actual flight velocity, whereas 
the latter represent variation in the speed of the satellite's projection on 
the unperturbed mean circular orbit. 

Constant in-orbit perturbation makes the satellite t race an evolute spiral 
(with slight periodic oscillations about the mean spiral  path). 
velocity constantly decreases, the orbital period increases. Both parameters 
a re  linear functions of time o r  the number of circuits. 
variation in the flight velocity is equal to minus the perturbing acceleration. 
The secular lag of the satellite behind its position in unperturbed orbit is 
proportional to time squared (or to the square of the circslit number). 
Oppositely directed perturbing acceleration produces a convolute spiral 
orbit. The flight velocity increases, and the orbital period decreases. 

satellite's mechanical energy due to perturbation forces. 
with (2.55), the increase in the mechanical energy leads to an increase in 
flight altitude, which in turn entails a reduction in orbital speed. An 
oppositely directed acceleration produces a reverse  effect. Note that the 
"retrogradel' influence of the longitudinal acceleration (analogous to the 
retrograde displacement due to the previously considered impulsive 
perturbation in longitudinal velocity vu) is manifested, not immediately, 
but only after some time. 
the satellite in the direction of its action. 
is small, we have (to terms of higher order  of smallness) 

The flight 

The mean (secular) 

This seemingly paradoxical motion is attributable to the increase in the 
In accordance 

At first, the longitudinal acceleration displaces 
Indeed, if  the angle cp in (3.8) 

Aw,, c PlcpTo = tTo. 

This initial perturbation, however, rapidly decays a s  the flight altitude 
changes. 
and for cp> 104"55'6", the sense of the displacement Au is reversed. 

C. 
orbital plane produces periodic disturbances in z and uz. 
(3.8) it follows that these perturbations amount to a mean displacement 
of the orbital plane by 

For ~>108~36 '14 ' '  the velocity variation Av, reverses  its sign, 

Constant perturbing acceleration W =  W, at right angles to the 
From (2.32) and 

(3.15) 
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and its rotation around the axis MNwhich makes an angle ~ 0 = n / 2  with the 
x axis (see Figure 2.5) .  The rotation angle of the orbital plane is 

(3.16) 

The resultant displacement of the orbital plane is equivalent to its 
rotation through the angle 9 around tne axis MN tangent at the initial point 

w 

3 

FIGURE 3.1. The effect of constant perturbing 
accelerations at  right angles to the orbital plane. 

of the unperturbed circular orbit (Figure 3.1). 
from the unperturbed orbital plane at the point q=n, deviating by 

The satellite is farthest 

(3.17) 

Comparison of these results with the preceding analysis of the effects 
produced by constant radial acceleration (see under A above) shows that 
constant acceleration applied at right angles to the orbit (whether along 
the radius or along the normal to the orbital plane) introduces no secular 
perturbations along the line of its action. 
in this direction. 
point q=x:  it is calculated from (3.9) and (3.17). 
period and the resulting secular displacement along the orbit produced by 
the radial acceleration SO are  attributable to the variation in the mean 
orbital radius (which clearly does not apply for normal acceleration Wo). 

It only "stretches" the orbit 
The maximum displacement of the orbit occurs at the 

The change in the orbital 

3.4. PERIODIC PERTURBATIONS WITH 
SATELLITE' S ORBITAL FREQUENCY 

We now proceed with the analysis of periodic perturbing accelerations 
whose frequency is equal to the satellite's orbital frequency. 
the second te rms  from the right-hand sides of (3.5) in (3 .6) ,  we obtain 

Substituting 
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(3.18) 

After some manipulations, applying the equality 

J x sin x d x  := sin x -xcosx, 

we find 

(3.19) 

(3.20) 

(3.21) 
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Inserting these expressions in (3.18) (after substituting c p ~ ~ . ( ~ ~ , ,  and c p ~ t  

(3.22) 

These expressions contain secular and periodic terms.  We shall not 
analyze the periodic disturbances, since their contribution is oversh 

basis of the foregoing relations). 

corresponding orbital elements. These variations a r e  produced by those 
te rms  in the right- hand sides of (3.22) which contain the monotonically 

by the secular effects (this analysis, however, can be easily mad Fwed on the 

Let &e<. AsecV,, ASecu, AsecVtc, As& and AseFz bedlie secular variations in the 

(3.23) 

A characteristic feature of these expressions is that they all contain 
terms which a re  proportional to the angle cp (o r  the flight time #=PI?) 
multiplied by trigonometric functions of the angles cp - cp~l.  cp - cp~i  and cp- VWI. 

The rate of secular variation is different at different points of the orbit, and 
this results in continuous systematic distortions of the orbit. We shall 
determine the nature of these distortions for  various periodic perturbing 
accelerations. 
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3.5. PERIODIC PERTURBING ACCELERATION 
ALONG THE RADIUS r(&+O., TI =W,=O) 

Comparison of (2.41) and (3.23) shows that this radial perturbation 
produces a nearly circular orbit with eccentricity e and argument of 
perigee w ,  defined by 

(3.24) 

where r ,  is the mean radius of unperturbed orbit, and g,=g(r,). 

apogee (ra) from the center of attraction, and seeing that 
Applying (2.43), which defines the distance of the perigee (rp) and of the 

f v=-, pr (3.25) 

we find the secular rate of change of e, rp, and ra(for Si>O): 

(3.26) 

For  &<O, ra and rp are  switched. 

be found from the relation 
The secular rate of change in the radius r at any point of the orbit can 

This secular perturbation thus reduces to a monotonically increasing 

The distortion lags 
distortion of the orbit. 
with a period equal to the satellite's orbital period. 
by n / 2  behind the initial perturbing acceleration. 
illustrated in Figure 3.2, where the solid arrows mark the direction of the 
perturbing acceleration, while the dashed arrows point in the direction of 
the corresponding orbital distortion (the large arrow inside the circle points 
in the direction of motion of the satellite). 

The radial rate of growth of this distortion fluctuates 

This aspect is graphically 

FIGURE 3.2. Radial periodic perturbing 
accelerations in circular orbit. 
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3.6. PERIODIC PERTURBING ACCELERATION 
ALONG THE ORBIT (TI* SI a W, - 0 )  

The secular perturbation in this case is conveniently represented a s  a 
sum of two component perturbations. 
equalities 

The first t e r m  is defined by the 

and the second t e rm by 

(3.28) 

(3.29) 

From (2.4 1) and (3 28)  it follows that the first of the two component 
perturbations produces a nearly circular orbit with the following eccentricity 
and argument of perigee: 

(3 .30)  

Hence, applying (3.25), we obtain expressions for the secular rate of 
change in e, rp, ra ,  and r(q)(for T i > O ) :  

I 

(3.31) 

The orbit in this case undergoes monotonically growing distortion at a 
rate which varies periodically with the satellite's orbital period. 
distortion of the orbit lags by 71 behind the initial perturbing acceleration. 
This is illustrated in Figure 3.3, which is-entirely analogous to Figure 3.2.  

The 

FIGURE 3.3. Longitudinal periodic perturbing 
accelerations in circular orbit. 
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The second secular perturbation defined by (3.29) has nothing to do with 
The change orbital distortion: it somewhat alters the period of revolution. 

in the orbita: period is given by 

6 4  T 
AP = - T ,  COS qT1 = 3 P L  COS prl. 

'm g m  
(3.32) 

Note that this change in the orbital period is associated with a certain 
variation A r m  in the mean orbital radius. 
is determined by the periodic terms in the right-hand side of (3.22): 

The magnitude of this variation 

T 
Arm= P i T ,  COS qT1 = 2r cos rprl. 

g m  
(3.33) 

3.7. PERIODIC PERTURBING ACCELERATIONS AT 
RIGHT ANGLES TO THE ORBITAL PLANE (W,#O, S,=T1=O) 

From (2.32) and (3.23) it follows that the secular displacement of che 
orbit in this case reduces to rotation of the orbital plane about an axis 
pointing at an angle 

The rotation angle of the orbital plane is 

(3.34) 

(3.35) 

Hence, applying (3.25), we find the angular rate of rotation of the orbital 
plane: 

(3.36) 

where h = is the mean angular velocity of the satellite in orbit. 
PI 

The relation between the perturbing accelerations and the rotation of 
the orbital plane is depicted in Figure 3.4, where the vertical arrows mark 
the perturbing accelerations, is the direction of flight of the satellite, and 
N is the sense in which the orbital plane rotates; the line A 0  points in the 
direction q=cpwl, and the line CD is the axis of rotation of the orbital plane. 

FIGURE 3.4. Periodic perturbing acceleration 
at  right angles to the orbital plane 
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3.8. PERIODIC PERTURBATIONS WITH A <& 
FREQUENCY WHICH IS AN INTEGER MULTIPLE 
OF THE SATELLITE’S ORBITAL FREQUENCY 

We now estimate the influence of the higher harmonics in (3.5), 
corresponding to i 2 2 .  The expressions for  the orbital perturbations 
resulting from these harmonics a re  analogous to relations (3.18) with 
sin ($ - cpsl). sin($ - cpTJ and sin($ - cpwl)  for sin i($ - cpsr) .  sin i($ - q T i )  and 
sin i($ - cp,,). This substitution reduces the problem to evaluation of integrals 
of the form 

@ 

0 I #/’ = s sin i (@ - cpI) sin (cp - $) dg, 

Q 

0 I J’:’=Ssinf (~-cp,)cos(cp-$)d$, 
(3.37) 

We only consider secular perturbations of the orbit. From 

1 sin i ($ - qt) sin (cp - $) = -z (cos [(i+ 1)g - icp, - ‘PI -cos [(i - 1)s - icp, + cp j J ,  

sin i Itp- rp,)cos (9- 9) = ?; [sin ((i - I)$ - icp, + cp] 4- sin [(i + I)$ - iq, - cp1 J 1 

it follows immediately that the integrals A’ and J!? do not introduce secular 
te rms  for i > 2 .  
either. We shall therefore concentrate on the third integral #!). Applying 
(3.20), we have 

The fourth integral df’does not contribute secular te rms  

T 

JP- 1 ~ ( c p  - cpl) - (9 - ~ J J  sin i (9 - cpl)dq= 

where x = i { $ - ~ , ) .  

to secular perturbations of the orbit. 
that only u is disturbed by these secular perturbations, and they are  
therefore given by 

Only the first te rm in the right-hand side of this expression corresponds 
Making use of (3.18), we conclude 

?COS iQr,. (3.39) 3* 3 TI I&.,+= -- T,cpcos icp,, =- -- 
t rm i S m  

This secular perturbation does not involve growing distortion of the 
orbit: it only al ters  the orbital period by 

6n@ P T  
A P = ~ T , ~ o s i ~ , , = 3 ~ ~ c o s i c p ~ ~ .  

l rm ‘ gm (3.40) 
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in the orbital period decreases a s  the order i of the 
perturbation harmonic becomes higher. It is also fairly sensitive to the 
initial phase qri of the perturbation. 

3.9.  CLASSIFICATION OF ORBITAL PERTURBATIONS 

It follows from the preceding that small  perturbing accelerations which 
a re  periodic functions of the angle q=ht may cause secular orbital 
perturbations of three different kinds. 

(eventually leading to orbit decay - the satellite falls to the Earth o r  
escapes from the sphere of the Earth's pull). These perturbations a re  
attributable to constant accelerations along the orbit (or in the opposite 
direction), and also to periodic accelerations in the orbital plane whose 
frequency is equal to the satellite's orbital frequency around the center 
of attraction. In-orbit constant accelerations make the satellite move in 
an evolute (convolute) spiral  with a monotonically increasing (decreasing) 
period of revolution. Periodic accelerations, on the other hand, cause 
monotonic growth of orbit eccentricity, and the shape of the orbit is 
eventually distorted to a considerable extent. 

plane around an axis through the center of attraction. 
a r e  caused by periodic accelerations at right angles to the orbital plane, 
whose frequency is equal to the satellite's orbital frequency. 

without distorting its orbit. 
accelerations along the radius r and by periodic accelerations along the 
orbit. The contribution from the periodic accelerations is smaller for 
the higher harmonics in (3 .39) .  

Perturbing accelerations whose frequency is equal to the orbital - 

frequency of the satellite have an essentially different effect from the 
''overtones''. When the acceleration frequency matches the orbital 
frequency of the satellite, a certain resonance occurs which is responsible 
for the growing distortions of the orbit. The nature of this resonance can 
be investigated with the aid of expressions (3 .3) ,  which describe the effect 
of impulsive perturbations. To this end, it suffices to consider impulses 
which a re  systematically applied a s  the satellite passes through two 
diametrically opposite points of the orbit. The perturbing impulses in 
diametrically opposite points must have the same magnitude and opposite 
directions. 
will produce a continuous growth of eccentricity. 
perturbations are  directed along the normal to the orbital plane, the plane 
will rotate, 
satellite's orbital period can obviously be treated a s  a combination of those 
impulsive perturbations. 

1. Secular perturbations which produce growing distortion of the orbit 

2. Secular perturbations resulting in constant rotation of the orbital 
These perturbations 

3.  Secular perturbations which change the orbital period of the satellite 
These perturbations a r e  caused by constant 

From (3.3) it follows that the in-plane impulsive perturbations 
If the impulsive 

Any perturbing acceleration whose period is equal to the 
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Chapter 4 

GENERAL CASE OF MOTION IN A NEWTONIAN 
FIELD OF GRAVITY 

4 .l. STATEMENT OF THE PROBLEM 

In the previous chapters we have considered motion in circular and 
nearly circular orbits. 
only i f  the initial conditions meet certain specifications. 

initial conditions), the orbits may substantially depart from circular. 
Various results of the preceding chapters then become meaningless. 
this chapter we shall therefore consider the general case of motion around 
a gravitational center (the Earth or any other primary). The only force in 
this analysis wi l l  be the gravitational pull pointing exactly to the Earth 's  center 
(or ,  in general, to the center of the primary). The acceleration produced 
by this force will be defined by Newton's formula (1.2). 
in Chapter 1 6  that (in the absence of large active forces) this is the principal 
driving force on a satellite moving inside the sphere of the Earth's 
gravitational pull and beyond the effective range of the Moon's pull (at 
distances less  than 9 -105km from the Earth's center and greater than 
7 . l o 4  from the Moon's center), at altitudes of 100-15Okm. 

The motion produced by the Newtonian gravitation only is therefore 
generally regarded a s  u n p e r t u r b e d motion. 
with the superposition of various perturbing forces a re  considered in what 
follows. 

It has been shown that these orbits a re  possible 

We shall show in what follows that in the general case (for arbitrary 

In 

It wi l l  be shown 

The problems connected 

4.2. EQUATIONS OF MOTION 

We shall operate in the previously defined right-hand rectangular system 
Oxyz, with the axis Oz pointing along the Earth's spin axis, and Ox directed 
to the point of vernal equinox. In Figure 4.1, C denotes the position of the 
satellite. 
attraction CJ and the point C at its opposite vertices, and its edges parallel 
to the axes of the Onyz frame. 
rectangular coordinates x ,  y, z of the satellite. 
parallelepiped is 

Consider a rectangular parallelepiped M, with the center of 

These edges a re  obviously equal to the 
The diagonal of this 

OC=r= l/n*+y*+zz. 
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The gravitational acceleration vector g is laid off along the diagonal CO, 
and a second rectangular parallelepiped N is drawn, with the vector g as  

FIGURE 4.1. Projections of the gravitational 
acceleration on rectangular coordinate axes. 

its diagonal; the edges of this parallelepiped are  the projections g,, g,, g, 
of the vector g on the coordinate axes. 
similar. Applying ( l . Z ) ,  we write 

The parallelepipeds M and N a re  

x g,= - g + = - p 7 I 

2 

or ,  in vector notations, 

(4.1) 

g = - - L ,  r3 - (4.2) 

where r is the vector which defines the position of the point C in the Oxyz 
frame. 

From (4.2), we have the vector equation of motion 

r=--$r. (4 .3)  

This vector equation is clearly equivalent to a set  of three second-order 
scalar differential equations. 

4.3. FIRST INTEGRALS O F  MOTION 

Vector-multiplying equation (4.3) by r and seeing that r X  r =0, we have 
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Hence, seeing that i X ;=O, we write 

Integrating this equality, we find the so-called a r e  a1 i n t  e g r  a1  in 
vector form: 

r X e = C ,  (4.4) 

where e=; is the satellite's velocity vector, C some constant vector (for 
the given unperturbed orbit). The vector integral (4.4) is equivalent to  
a set  of three scalar  integrals: 

yv, - zvy = c,, zvx - xu, = cz, xvy - yv, 1 cg, 14.5) 

where v,, vy,  u, and Ci, C2, C8 are  the projections of the vectors v and C ,  
respectively, on the coordinate axes of Oxyz. Ci, C z ,  C8 a re  clearly 
constant for the given orbit. 

plane through the center of attraction, at right angles to the vector C .  
satellite in our case is seen to move in one plane, which is called the 
o r b i t a l  p l a n e .  

From (4.4) it follows that the vectors r and v remain in a certain fixed 
The 

Let C be the magnitude of the vector C: 

Applying the well-known expression for the magnitude of vector product 
/15/ ,  we write 

C =  ru sin a, (4 

where ir is the magnitude of the satellite's velocity vector, CL the angle 
between the vectors v and r (Figure 4.2).  

Let ds be the elementary displacement of the satellite in time dt. For 
small  df, we have 

dS=vdt. 

Expression (4.7) takes the f w m  

C d f = r s i n a d s .  

But from Figure 4.2 we see that rsin ads=2da (to terms of higher order  of 
smal1ness)is twice the area of the elementary orbital sector OAA,. Hence, 

do 2 X " C .  (4.8) 

Integrating, we find 

2u= Ct + c,, (4.9) 
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where u is the a rea  enclosed by the segment A& of the orbit and the radii 
OAo and OA (here A. is an initial position of the satellite). 

FIGURE 4.2. Illustrating the definition 
of areal velocity. 

C, is a new constant which depends on the choice of the point of origin 
for  u and t .  From (4.4) and (4.8) it follows that the satellite moves in a 
plane through the gravitational center. The areas  swept by the radius- 
vector in equal times are  equal; in other words, the so-called a r e a 1 

C 
v e l o c i t y  is constant, being equal to T .  

We now take the scalar product of equation (4.3) and the vector i :  

(4.10) 

The distance r from the center of attraction and the velocity v a re  
clearly given by the relations 

Then, 

Substituting in (4.10), we have 

E d  
2 df 
--(vZ)=-.E%, 

rz  dt 

Integrating this expression, we find another f i rs t  integral 

(4.11) 

where C, is a constant. 
From (1.6) it follows that (4.11) is a particular case of the general 

principle of constancy of mechanical energy in a conservative force field 
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128 I .  
is equal to twice the amount of mechanical energy per unit mass.  

with distance from the center of attraction. 

It is generally called the e n e  r gy  i n  t e g r a 1  . The constant C5 

A direct consequence of the energy integral is that the velocity decreases 

4.4. SHAPE OF ORBIT 

To find the shape of the orbit, we introduce a polar system of coordinates 
r,  u, where u is the angular distance from a certain fixed direction through 
the center of attraction in the orbital plane. In these coordinates, equations 
(4.8) and (4.11) take the form 

rG=C, ; ' + P t 2 = ~ + C s  (4.12) 

In this chapter we shall only consider orbits with 

C#O. 

The case C=O, corresponding to vertical motion, will  be discussed in 
Chapter 7. 

equation of the set, which gives 
To eliminate the independent variable t from (4.12), we take the f i rs t  

Substituting in the second equation of (4.12), we obtain a differential equation 
which describes the orbit: 

Substituting a new variable r 

C p = -  
r '  

we have 

Inserting in (4.14), we find 

Hence 

(4.15) 

(4.16) 
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where ca is a new integration constant. 
From (4.15) we have 

C 7--$ = cos(a - CJ, 

Changing over to a new variable 

9=U-Cca, (4.17) 

we also introduce two new constants 

(4.18) p = -  CZ and e = = ' ( T % ,  
P 

These substitutions give the final equation of 

r =  P 
1 + e c o s 6  * 

the orbit in polar coordinates: 

(4.19) 

This is clearly an equation of a conical section (ellipse, hyperbola, or 
parabola) with a focal parameter p and eccentricity e. 
attraction is located at one of the foci of the conic, 
as Kepler's second law (in generalized form). 
called the t r u e  a n o m a l y .  

The center of 
Our result is known 

The angle 6 is generally 

4.5. SHAPE OF THE ORBIT AS A 
FUNCTION O F  FLIGHT VELOCITY 

From (4.19) it follows that for O<e < I ,  the orbit is an ellipse (for e =  0, 
this ellipse reduces to a circle of radius r=const). 
is a parabola, and for e > l  a hyperbola. 

in-plane normal to the radius-vector at the point A (see Figure 4.2). 
Clearly, 

For e =  1, the orbit 

Let 8 be the angle between the direction of the velocity vector and the 

e-n - 5 - a  (4.20) 

and (4.7) takes the form 

C = rv cos e. (4.21) 

Hence, applying (4.11) and (4.18), we find 

(4.22) 
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where 

In accordance with (1.4) and (1 .9) ,w= fi 
distance r from the center of attraction, and 

(4.23) 

is the circular velocity at a 

(4.24) 

is the so-called e s c a p e  v e  1 o c i t  y for the particular primary being 
considered. 

orbit is an ellipse. If now u =  V, then k= 2 and e =  1, and the orbit is 
parabolic. If v>V,  then k>2, e > l ,  and the orbit is a hyperbola. To sum 
up, if a body moves at any time with a velocity which is less  than the 
escape velocity V ,  it will continue moving in an elliptical orbit (providing, 
of course, that it does not collide at the end of its path with the Earth 's  
surface). If the velocity of the body is equal to the escape velocity, it 
will move in a parabola, and if  its velocity is greater than the escape 
velocity, i ts  path is a hyperbola. In either of the last two cases, the 
body recedes to infinity, i. e., escapes from its primary. This conclusion 
is fully consistent with the corresponding result which has been derived 
in Sec. 1.1 from energy considerations. Since without perturbations the 
eccentricity e remains constant, the conditions u < V ,  v=V o r  u>V a re  
conserved in the course of motion in unperturbed orbit. 

In conchsion, note that (4.22) may be written as 

From (4.22) and (4.24) it follows that if v<V, then k < 2  and e< l .  The 

e = v + ( k  - 1)2 cos% (4.25) 

Hence it follows that a circular orbit (e=O) is possible only if 

v = w  and 0-0. (4.26) 

which is consistent with the results of Chapter 1. 

53 



chapter 5 

ELLIPTICAL ORBITS 

5.1. PRINCIPAL GEOMETRICAL PROPERTIES 
OF ELLIPTICAL ORBITS 

Let u s  consider in greater detail motion in elliptical orbit (0 4 e < I ,  u < v) . 
In our analysis, we shall apply the well-known geometrical properties of 
ellipses . 

From (4.19) it follows that the p e r i c e n t  e r n is located at the point 
with 6= 0 (the pericenter is the point of the orbit which is closest to the 
center of attraction; for  orbits around the Earth this point is the p e r i g  e e ,  
for orbits around the Sun it is the p e r i h e 1 i o n )  . The point farthest from 
the center of attraction (the a p o c e n t e r A ; this is the a p o g e e of orbits 
around the Earth and the a p h e 1 i o n  of solar orbits) corresponds to a true 

FIGURE 5.1. Geometrical parameters 
of elliptical orbit. 

anomaly 6 =n(Figure 5.1). Putting 6= 0 and 6 = n  in the right-hand side of 
(4.19), we find the pericenter (minimum) and the apocenter (maximum) 
distances of the center of attraction 0 (the f i r s t  f o c u  s of the elliptical 
orbit): 

(5.1) r =P P 
p l + s '  'a"- 1 - e '  

The points A and ll a re  the two farthest points of the elliptical orbit, 
The line A l l  is therefore called the m a j o r a x  i s of the orbit. Half the 
lengthofAI7is the s e m i m a j o r  a x i s ,  a ;  i t is  givenbytheexpression 
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where p is the focal parameter. 

the relations 
If a and e a re  known, the parameters p ,  rp,  and r ,  a r e  determined from 

p = a ( l  - e * ) ,  r P- - a ( l  - e ) ,  r ,=a(l+e) .  (5.3) 

Let ha and hp be the apogee and the perigee heights of the orbit above the 
Earth’s surface. 
r,=R+h,, we have 

If the Earth is a sphere of radius R ,  so that rp=R+hp,  

The midpoint S of the semimajor axis is the c e n t  e r o f t h e 
e l l i p t i c a l  o r b i t .  The distance d = O S  is the l i n e a r  e c c e n t r i c i t y ,  
defined by 

d = a -  rp=ue. (5.4) 

The point 0’, which is the symmetrical image point of 0 on the major 
axis (i .e. ,  O‘S=OS=d) is the s e c o n d  f o c u s  of the orbit. We know 
from analytical geometry that the ellipse is a locus of points satisfying 
the equality 

r +r‘= 2a,  (5.5) 

where r and r‘ are  the distances of an arbitrary point of the orbit from 
the foci 0 and 0‘. 

D and D’. 
t h e  e 11 i p  s e . 
diameters, i. e., 

Any straight line through the center S meets the ellipse at two points 
Any segment between these two points is the d i a m e t e r of 

The center of the ellipse i s  the midpoint of all the 

SD = SD’. 

The largest diameter of the ellipse is i ts  major axis An. The least 
diameter BB‘ is at right angles to the axis An; this is the m i n o  r a x i s  , 
while the segment b=SB=SB’is the s e m i m i n o r  a x i s .  Since the 
ellipse is symmetrical, we see that the distances rb and r; from the points 
B and B‘to the two foci a re  equal. From (5.5) we have 

r, = a. (5.6) 

From (5.4) we have the length of the semiminor axis 

b = v w  = a F .  (5.7) 

From (4.19) we see  that as  the satellite moves from the pericenter I7 
to the apocenter A (i. e. ,  as  the true anomaly goes from 0 to T ) ,  the 
distance r continually increases, whereas from point A to point ll it 
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decreases. The points B and B'therefore divide the entire orbit into two 
parts: B'nB, where r < a ,  and B'AB, where r > a .  

eccentricity e a r e  similar. 
progressively more elongated, and for e + l ,  we have 

From the above relations we see that all elliptical orbits of equal 
As e increases, the elliptical orbit becomes 

(5.8) 

The apocenter recedes to infinity, and the orbit reduces to a parabola. 

5.2. FLIGHT VELOCITY AND ENERGY 

We now find the components of the velocity vector v at any point of the 
Let upand v,be the projections of this vector on the radius and i t s  orbit. 

in-plane normal (Figure 5.1). Applying (4.21) and seeing that 

we have 

On the other hand, from (4.18) we see that 

To find vr ,  we differentiate (4.19): 

6. p e  sin 8 
(1 +e cos 6)s vr=r  = 

F r o m  (4.19) and (5.11) we obtain 

Substituting in the preceding equality, we finally have 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

(5.13) 

To find the magnitude of the velocity vector v, we make use of relations 
(4.11), (4.18), (5.3), and (5.10). After simple manipulations, we have 

(5.14) 

or finally 
(5.15) 
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From (5.11), (5.13), and from Figure 5.1 it follows that the angle 8 
(the inclination of the velocity vector to the local horizon) is given by 

tge=)’=LesinO= 1+ecos4b’  (5.16) 
vu P 

We see that the flight velocity decreases a s  the body recedes from the 
center of attraction (i. e., a s  the angle 6. goes from 0 to x )  and increases 
a s  it approaches the center (for 6 going from R to 2n). The flight velocity 
is maximal and minimal at the pericenter and the apocenter, respectively. 
Applying (5.3) and (5.15), we find the corresponding velocities up and va: 

(5.17) 

VP =- 1 i - e  
v ,  1 - e ‘  

where W m =  c i s  the circular velocity for the radius r = a ;  wp= G a n d  

w,= fi a re  the circular velocities in perigee and in apogee. 

From (1.4), (5.6), and (5.15) it follows that the flight velocity at the 
extreme points B and B’ of the minor axis is 

Ob = wt ,=  wb, 
where wb is the circular velocity at these points. 

Expression (5.15) may be written a s  

where w= fi is the circular velocity at the current point of the orbit. 

Since over the part B’nB of the orbit r<a, then clearly o>w. 

The minor axis BB‘is seen to divide the elliptical orbit into two similar 

Conversely, 
over the path B’ABwe have r>a, so that v<vl. 

parts. 
inequalities 

The one nearer to  the pericenter (BnB‘) is characterized by the 

r<a, v>a. 

The other ( B A B ‘ ) ,  which is closer to the apocenter, has 

r>a, v<w.  

As regards the angle 8 between the velocity vector and the horizon 
(i. e., the inclination of the tangent to the orbit), we see from (5.16) that 
at the pericenter and the apocenter 

Bp=Ba=O. (5.18) 

As the body moves from pericenter to apocenter, e> 0, and on its way from 
apocenter to pericenter, 9<0. 
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To find the extrema (the maximum and the minimum values) of the 
angle 0 ,  we differentiate (5.16) and make use of the condition 

which for e#O (i. e., a noncircular orbit) is equivalent to 

cos 8 = -e. 

(5.19) 

(5.20) 

The two roots of this equation, 6, and 62, are  defined by 

sin 9, = + and sin 9, = - v m ' .  
Substituting these roots in (5.16), we obtain the maximum and the minimum 
values of the angle 0: 

emax= arcsin e, Omh=-arcsin e. (5 .21)  

Applying (5.20) and Figure 5.1, we can show that these extrema1 values 
a re  attained at the end points of the minor axis, B and B'. 

Let us calculate the total mechanical energy per unit mass ,  Q, which 
should be imparted to an artificial Earth satellite launched into a given 
elliptical orbit. Applying (1.6), (1.7), and (5.15), we find 

Q = P(+ -&I. (5.22) 

This expression is identical to relations (1.7) and (2.55) foi- circular 
and nearly circular orbits, with semimajor axis substituted for  the radius 
of circular orbit (the mean radius of nearly circular orbit). 

FIGURE 5.2. Various elIiptica1 orbits. 

There is thus a single-valued relation between the totalmechanical energy 
per  unit mass  and the semimajor axis a of the orbit. In particular, if Q =  0, 

we have a = ~ ,  if Q=&, we have a = R ,  and if Q=$, we have a=oo(the 

elliptical orbit is transformed into a parabola). 
represents f ree  fall, the second is the launch of a satellite with the ground 

R 

The f i rs t  of the three cases 

58 



circular velocity WR, and the third is the launch with the escape velocity 
Va (see See. 1.1). The corresponding orbits a r e  shown in Figure 5.2.  

5 .3 .  FLIGHT TIME AND ORBITAL PERIOD 

Making use of the areal  integral (4.9) and relation (5 .10) ,  we can find 
the time of passage through a given point D of the orbit, 
manipulations, we have 

After some 

(5 .23)  

where T is the epoch of pericenter passage, and u the area of the elliptical 
sector ITOD (Figure 5.3) .  

1 

FIGURE 5.3. The relation between 
true and eccenuic anomalies. 

To find the area 0 ,  we draw a circle of radius a around the center S of 
the elliptical orbit. The ellipse being considered can be obtained from 
this so-called a u  x i 1 i a r y c i r c 1 e by uniform compression in a ratio bJa 
along the semiminor axis. Therefore, if a straight line parallel to the 
semiminor axis is drawn through the point D ,  I( and D'being the intersection 
points of this line with the semimajor axis and the auxiliary circle, we 
may write 

(5 .24)  

(5 .25)  

where Si and S2 a re  respectively the areas  of the circular sector ITSD' and 
the triangle OSD'. 

Making use of Figure 5 .3  and seeing that according to (5.4) SO=ue, we 
write the following expressions for the a reas  Si and Se: 

& = $ E ,  S,=$esinE, (5.26) 
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where E = L D ' S n  is the e c c e n t r i c  a n o m a l y  (in distinction from the 
true anomaly 6= L D O n ) .  

Substituting (5.3), (5.7), (5.25), and (5.26) in (5.23), we find 

where 

t = t +  E - e  A sln E I (5.27) 

L=-. fi 
J l  

(5.28) 

The problem thus reduces to the determination of the eccentric anomaly 
E (see Figure 5.3). Applying (5.3), (5.7), and (5.24), we find 

J r cos 6 =  OK= a (cos E - e), 
rsin6==D'K=aVTT?sin E .  b 

Squaring these equalities and adding, we find 

r = a ( l  - ecos E ) .  

From this relation and from the first equality in (5.29), we have 

I r ( l  +cos6)=a( l  -e)(l f c o s E ) ,  
r (1 - cos 6 )  = a  (1 +e) (1 -cos E).  

(5.29) 

(5.30) 

(5.31) 

Dividing the second equality by the f i rs t ,  we obtain the final expression 
for the eccentric anomaly: 

In calculating E from this formula, we must keep in mind that the angles 
E 6 3 and 5 are  always in one quadrant. 

we see that E=+ at the pericenter and the apocenter (i. e., for 6=kn, where 
k is a whole number). 
E<6,  and along the path from apocenter to pericenter (n<6<2n), E>*. 

From relations (5.27), (5.28), and (5.32) we can find the epoch f 
corresponding to any point of the orbit (as  specified by the angles 6 or E ) . 

It is often necessary to solve the inverse problem - to  find the position 
of the satellite ( i .e . ,  the angle 6) at a known time t .  
we see that this problem is reduced to the determination of the eccentric 
anomaly E from K e p l e r ' s  e q u a t i o n  

Moreover, from the above relation 

Along the path from pericenter to apocenter (0<1?<n), 

From (5.27) and (5.32) 

E - e sin E=M, (5.33) 

where M is the so-called m e a n  a n o m a l y ,  

M = h ( f  -z) .  (5.34) 
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We shall show that Kepler's equation always has a single real  solution. 
Consider the function 

F ( E ,  M )  =E - e sin E - M. 

Clearly, 
F(-co ,  M)=-w,  F(m, M)=oo, %=l--e~osE>O. 

Hence it follows that for any M there is always an E ,  such that 

There a re  a great many techniques for approximate solution of Kepler's 
One of these is the method of successive approximations, where 

F(E, M )  = O ,  which corresponds to a solution of Kepler's equation. 

equation. 
the calculations a r e  made according to the scheme 

E,,= M-+esinE,-,, (5.35) 

where €,,-I and E,, are  the preceding and the current approximations of E .  
As the f i r s t  approximation, we can always take Ei=M. 

time t as  the angle 6 goes through 2n. 
E also goes through 2n. 

Let us  now find the orbital period P .  We must calculate the change in 
From (5.32) it follows that the angle 

Then, applying (5.27), we find 

2% 21. 
A fi 

P = - - - s 2 n - .  (5.36) 

This expression is analogous to the corresponding relation (1.5) for 
circular orbit, with the major semiaxis a substituted for the radius r . 
The orbital period of a satellite in elliptical orbit with semimajor axis a 
is thus equal to the orbital period of a hypothetical satellite in circular 
orbit of radius r=a. From (5.28) and (5.34) we see that h is the angular 
velocity of the satellite (equal to the mean angular velocity in elliptical 
orbit), while the mean anomaly M gives the angular distance of the 
hypothetical satellite from the perigee point of the elliptical orbit. 

major axis a ,  Numerical estimates of the P vs. a dependence can be 
obtained from the graph in Figure 1.1: the flight altitude h = r -  R of the 
circular satellite should of course be replaced with the mean altitude 
h m = a - R  of the elliptical orbit. 

Comparison of (5.22) and (5.36) shows that there is a one-to-one 
correspondence between the semimajor axis a of elliptical orbit, the total 
mechanical energy per unit mass  Q, and the orbital period P .  

From (5.36) we see  that the orbital period P increases with the semi- 

5.4. ELEMENTS OF ELLIPTICAL ORBIT 

Motion in elliptical orbit is a particular case of motion of a point mass 
in a given force field. As we have previously observed, this motion is 
described by a sixth-order set  of ordinary differential equations. 
it follows that an elliptical orbit is fully defined by six independent 
parameters. These are ,  for instance, the initial conditions of motion, 
i.e., the rectangular coordinates xo, yo, z ~ o f  the mass center and the 
components v ~ ,  uyo, vzo of the velocity vector at a certain epoch t=to. 

Hence 
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Another set of independent parameters fully describing the orbit is provided 
by the six constants Ct, C2, . . ., CB introduced in the previous chapter in the 
integration of the equations of motion (4.3). 
can be established between the set  of initial conditions of motion and the 
set  of integration constants Ci, C,, . . ., Cs. A set of any six independent 
parameters which a re  in one-to-one correspondence with the initial 
conditions of moticn (or,  in virtue of the preceding remark, with the 
integration constants CI, Cz, ..., C,) can obviously be used a s  orbit 
characteristics, We call it a c o m p l e t e  s e t  of o r b i t a l  e l e m e n t s .  
A criterion of its completeness is that it completely defines the orbit, 
i. e., makes it possible to find the coordinates and the velocity components 
of the mass center at any point of the orbit (or ,  alternatively, at any time t ) .  

As an example, let us consider the following set  of orbital elements: 

A one-to-one correspondence 

inclination i, 
longitude of the ascending node a,  
argument of pericenter o, 
semimajor axis a, 
eccentricity e ,  
epoch of pericenter passage T .  

The parameters i and characterize the orientation of the orbital plane. 
Their definition is given in Sec. 1.2 (see Figures 1.2 and 5.4). 

FIGURE 5.4. Elements of elliptical orbit. 

The argument of the pericenter, o, is the angular distance from the 
ascending node 
of the satellite (see Figure 5.4). 
semimajor axis of the orbit and the position of the pericenter; it is defined by 

to the pericenter ll, reckoned in the direction of motion 
This angle specifies the direction of the 

o=u--6.  

where u and 6 a re  respectively the angular distance from the ascending node 
and the true anomaly of any point D of the orbit. 
specify the extent and the shape of the orbit, while the epoch z is used a s  
a reference point on the time scale. 

The elements a and e 
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5.5. POSITION AND VELOCITY FROM ORBITAL ELEMENTS 

We list the formulas which a re  used in determining the coordinates 
x ,  g, z and the velocity components vX, v,,, v, from known values of the 
orbital elements i, A?,, a, a, e, 7. Applying relations (1.14), (4.19), (5.3), 
(5.11), (5.13), (5.27), (5.28), (5.30), and (5,32), we write 

v-ii , k=- I a3~a 
E - e s i n E  

vu 5 ry=  G(I + e cos a), 
x =  r(cos Q, cos u- sin Q sin ucos i), 
y = r (sin Q cos u+ cos Q sin ucos i), 
z = r  sin u sini ,  

v , s  w, (cos cos u - sin 0, sin Y cos I) - 
wy = v,(sin Q, cos u+cos .Q, sin u cos i)- 

v, = v, sin u sin i + w, cos u sin I. 

- vu (COS sin u +sin cos u cos i), 

- vu (sin a sin u - cos Q cos u cos i) ,  

(5.37) 

These formulas unambiguously give the values of x, y, z, ux, u,,, vz at any 
point of the orbit (that the procedure is single-valued follows from the 
unique solvability of Kepler's equation (5.33) and also from the fact that 

the angles and a re  in the same quadrant). The time t ,  the true 

anomaly e, o r  the eccentric anomaly E can be assumed a s  the argument 
specifying the position of the body in orbit. If the time t is adopted a s  
argument, Kepler's equation (5.33) must first be solved, in order  to find 
the eccentric anomaly E ( a  technique for  the solution of this equation has 
been outlined in the previous section). o r  E are  chosen a s  argument, 
Kepler's equation need not be solved. 

E 6 

If 

FIGURE 5.5. A frame of reference connected 
with the orbital plane and the perigee point 
of elliptical orbit. 
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If the position of the satellite in orbit is defined in terms of E (or  t ) ,  it 
is advisable to eliminate the true anomaly o among the relations in (5.37). 
To this end, consider a right-hand rectangular frame ORs with i ts  origin 
at the center of attraction 0. 
the plane Ogt, is the orbital plane, and the axis 05 points at right angles 
to the orbital plane so that the satellite appears to move clockwise if 
viewed in the positive direction of this axis (Figure 5.5). 

The axis Og is directed to the pericenter, 

From (5.37) and Figure 5.5 we have 

f = r cos 8 = a  ( 1  - ecos E) cos 9, 
q 5 r sin 6 = a (1 - e  cosE) sin 6, 

vUE=v ,coS6-  v,, sin e= fi [e  sin 6 cos 6- 

-(I + e cos 6) sin 81 = - fl sin 6, 

vrl = vr sin a+ vu cos t+ = fl+ [e sin2 e+ 

c = oy == 0. 
+(I +ecos*)cos61= f l(e+cos*), 

On the other hand, from (5.29) and (5.30) we have 

m s l n  E cos = cos E - e  
1 - e c o s E  ' I - e c o s E '  sin*= 

and finally, making use of (5.3), 

f =a (cos E--  e). 

q = a  V-sinE, 

5=0, 

a I - e c o s E '  

I p wz cos E 
'Oq= 6 I - e c o s E  * 

I ?Iuc = 0. 

(5.38) 

(5.39) 

(5.40) 

The frame Otqg is transformed to the previously defiiied frame Oxyz by 
the following matrix of direction cosines: 

sin a s1n i 

sln o sln i cos 0 sln I 

The first column of this matrix is easily derived from (5.37). To this 

end, it suffices to  find the ratios :, 5 ,  f, substituting o for the angle u 
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in the corresponding relations. The second column is obtained from the 
first by substituting o+s/2 for o. 
use of (2.45'). 

The third column is determined making 

5.6. ORBITAL ELEMENTS FROM 
INITIAL CONDITIONS O F  MOTION 

The relations of the previous section enable us  to find the initial 
conditions of motion xo, yo, z0, vxo, vYo, vz0 at a certain epoch t=ta from the orbital 
elements a, e, r, i, 4, o ;  the procedure is single-valued. Let us  now consider 
the reverse problem, namely how to determine the orbital elements from 
the initial conditions. 

The elements Q and i can be found from (2.44) and (2.46). 
To find the semimajor axis a and the eccentricity e ,  we should first 

ietermine the initial distance ro from the gravitational center, the 
magnitude of the initial velocity vector vo,  and the angle Bo between the 
velocity vector and the in-plane normal to the radius vector joining the 

(5.41) 

We invariably assume 
cos &>O. 

This is so because the angle e is reckoned in the direction of satellite 
motion (see Figure 4 .2), and therefore 

which ensures unambiguous definition of the angle. 
From (4.22), (4 .23) ,  and (5.15), we have 

(5.42) 

(5.43) 
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To find 0 and t, we should first determine the t rue anomaly 6 at the 
point of origin. From (5.37) we have 

(5.44) 

where vd and vUo are  the initial values of the two velocity components. 
On the other hand, from (4.18) and (4.21) we have 

Substituting this expression in the right-hand s ides  of (5.44) and applying 
expression (5.43) for the coefficient ko, we have 

Hence 

(5.45) 

(5.46) 

The true anomaly %is uniquely determined from (5.45). A verification 
is possible using the identity sinZ eo+  COS^@^= 1 (this simultaneously verifies 
the calculated eccentricity e ) .  
anomaly is determined uniquely only if we remember that sin60 has the 
same sign a s  the numerator in the right-hand side of (5.46), and cos60 the 
same sign a s  the denominator (since e 2 0 ) .  

To find the argument o, we make use of the third equality in ( 5 . 3 7 ) ,  
according to which 

From (5.46), on the other hand, the t rue 

o=rco-eo, (5.47) 

where uo is the initial value of the angle u ,  defined by (2.52). 
The expression for the last element z can be obtained from (5.37): 

(5.48) 

where Eo is the eccentric anomaly at the point of origin. 

elements a, e, z, Q,, i ,o from the initial conditions no, yo, zo, uxo, vyo, U,O at 
We list all the formulas which a re  used in calculation of the orbital 
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a certain epoch t=to: 

row: ' 0  

p ,  
a = -  R o = -  2 - k o  ' 

ko sln Bo cos Bo cos = ko cos* Bo - 1 
e '  e '  sin 8, = 

kosin Bo cos Bo 
tg*oo= kocos26,-1 ' 

o= IC" - 8 0 ,  

f o  , sinuo=- rosin i ' 
xo cos SL + yo sin dL cos uo = 

r0 

En-esin i\. Eo , h = -  fi 
' T = f o -  

(5.49) 

When using these formulas, we must always remember that the sign 
of sin Q is the sign of C, ,  whereas the sign of cos Q is the sign of minus C,. 

Furtherrnore, the angles 4 and 4 lie in one quadrant. 

Relations (5.49) a re  suitable for unambiguous determination of the 
orbital elements f rom known initial coordinates and velocity components, 
which satisfy the condition of elliptical orbit 

(5.50) 

In conclusion, note that when solving our problem from (5.49), we need 
not car ry  the process to explicit determination of 80: either sineo or cos& 
will suffice. 

the initial conditions of motion and the orbital elements. 
set  of orbital elements introduced in Sec. 5.4 completely defines the entire 
orbit, and is therefore complete. 

In particular, the semimajor axis a can be replaced with the period P ,  
or the focal parameter p can be substituted for  either of the parameters 

We have thus established a reciprocal one-to-one correspondence between 
The particular 

There is clearly an infinity of different complete sets of orbital elements. 
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a o r  e .  
replaced with the mean anomaly 

In celestial mechanics the epoch of perigee passage T is often 

Mo=h( t o  - T) =Ea - e sin Eo, (5 .51)  

at a certain given instant of time fa ( Ea is the corresponding eccentric 
anomaly). 

Kepler's equation (5 .33)  then takes the form 

M =Ma +X ( t  - t o )  = E  - e sin Eo. (5 .52)  

5 .7 .  SERIES FOR APPROXIMATE DETERMINATION 
O F  LOW-ECCENTRICITY ELLIPTICAL ORBITS 

It follows from the preceding results that to establish a relation among 
the polar coordinates r, 6 and the flight time t ,  we must introduce a new 
intermediary quantity -the eccentric anomaly E - and solve Kepler's 
transcendental equation (5 .33) .  This often prevents us from performing 
a rapid qualitative analysis of motion in elliptical orbit. In the analysis 
of low-eccentricity orbits, this obstacle is easily overcome by introducing 
ser ies  expansions with the eccentricity e as  a small parameter. In this 
section, we consider some of the approximation ser ies .  The true anomaly 
B., and then the time t wil l  be used a s  the independent variables in the 
expansions. 

A ser ies  for the function r ( 8 )  is obtained by expanding the right-hand 
side of (4.19) in powers of the small quantity ecose: 

r = p (  1 - e cos 6 +e2 cos2 6 - e3 cos3 6 + e4 cos4 6 - . . .). (5 .53)  

A ser ies  expansion of t(6)is derived from (5 .2 ) ,  (5 .12) ,  and (5 .36 ) .  
We have 

e 
~ = T + P ~ / ( I  -ez)%(1+ecos6)-2d6, (5 .54)  

0 

where Pi is determined from (3.7): 

We now expand the integrand in the right-hand side of (5 .54)  in powers 
of e. To this end, note that 

( 1 f e c o s 6 ) ~ 2 = 1 - 2 e c o s 6 + ~ 2 c o s 2 6 - 4 e 3 c o s ~ 6 ~  5e4cos46- ..., 

3 _ _  e2 
2 

3 + j fe4+  ... 
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Multiplying these ser ies  term by term,  we find 

Now, 

Then, 

( 1 - e2P1(1 + e cos e)- = 1 - 2e cos 6 + 
+3e2 (cos2 6. - - -e3 (4 cos3* - 3 cos e)+ 

+e4(5Cos4@-~cosl@+~)+ ... 

cosm+1 cos*@=- 2 '  

4 cos3 = cos 3t? + 3 cos 6 

cos 48+4 cos 26+3 
8 cos4 6 = 

. . . . . . . . . . . . .  

3 ( I  -e2)"z(1+ecos*)-2= 1--2ecosfi+~e2cos2t+- 
1 -8cos36+~e4(5cos46+2cos26) -  ... 

Substituting in the right-hand side of (5.54) and integrating, we find the ser ies  

3 t = 5 + P, [e - 2e sin .tt+ e2 sin 26 -; sin 36 + 
+$(ss in~+4s in2*)- -  ...I. (5.55) 

Let us now write the ser ies  expansions of e ( f )  and r ( f ) .  The mean anomaly 

is used a s  the independent variable, ra ther  than the time f .  

the equation 
We apply Lagrange's formula for a function f(y), where y is a root of 

Y = a +X(P(Y). (5.57) 

Here a, x,  y a re  arbitrary complex numbers, and cp(y) meanwhile is an 
arbitrary function. Lagrange's formula in this case has the form 1 2 ,  301 

xz d f (Y) = f (4 - t x 9  (4 f' (a)+ 5 r$ (4f'(41+ . . .  
xn &I-1 

nl da*-' 
... +-- I(P"(a)f'(a)I+ . . .  (5.58) 

Let s be a closed contour (in the complex plane) inside which f ( y )  and cp(y) 
a re  holomorphous functions. If at any point of the contour s 

(5.59) 

the ser ies  (5.58) converges to f(y)for any a from the region inside s. 
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Kepler's equation (5.33) is clearly a particular case of equation (5.57). 

y=E, rp(E)=sinE, x=e ,  a=M.  (5.60) 
ile r e 

I-Ter,ce, putting 
f ( E )  =E,  

and applying Lagrange's ser ies  (5.58), we obtain the following expansion for 
the eccentric anomaly: 

2 d  e3 dz 1 3  
E = M+ e sin Mf sin2M+m d ~ 2  sin3 M+ L L s i n 4  4! d M 3  M+ I - .  ( 5.6 1) 

Now, 
1 -cos 2M sin2 M= - 2 '  

4 
= 3 sln M - sin 3M 

cos 4M - 4 cos 2M+3 
8 sin4 M= 

. . . . . . . . . .  

Differentiating and substituting in (5.61), we obtain a final expression for  E ,  
the solution of Kepler's equation (5.33): 

E=N+esinM+$-sin2M+$ (3sin3M-sinM) f 

+f (2 sin 4 M -  sin 2M)+ . . . (5.62) 

To obtain 6(M) ,  we make use of (5.2), (5,11), (5.12), (5.28), (5.30), and 
(5.56), whence 

(5.63) 

On the othe 

Comparing 

hand, differentiating Kepler's equation (5.33), we have 

(5.64) d E  d E  1 - d M ( l  -ecosE)= 1, -= 
dM I - e c o s E  * 

5.64) to (5.63), we see  that 

(5.65) 

Differentiating (5.62) and squaring the series,  we find 

e= dM 1 +~cosM+~~co~~M+$(~cos~M-~osM)+$(~cos~M-cosZM)+ . . . , 

(-$.$r= 1 +2e cos M+ e2(2 cos 2M+ cos2 M)+$ (9 cos3 M - cos M+ 8 cos Mcos ZM)+ . . . = 

= 1 + 2e cos M + $ (5 cos 2Mf I)+ 4 (13 cos 3M+ 3cos Mf+ . . . 
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Substituting in ( 5 . 6 5 ) ,  integrating, and inserting for v m  i ts  binomial 
expansion 

1 1 
2 8 = ~ - - e ? - - e + -  . . .  , 

we obtain the final series 

5 6 = M+ 2esinM+ r e 2  sin 2M+ $(13 sin 3 M - 3  sin M) + . . , (5 .6G) 

We now proceed to determine r ( M )  with the aid of Lagrange's formula 
( 5 . 5 8 )  and equalities ( 5 . 6 0 ) .  From ( 5 . 3 0 )  we have 

f ( E )  = = I - e cos E,  f' ( E )  = e sin E. 

Hence, 

S d  e+ d2 f =  1 -ecosM+ezsin*M+ ~ - - - ~ i n ~ M + ~ ~ s i n 4 M +  21 d M  . .  . 
or ,  finally, 

r = a [ l - - c o s M + ~ ( l - - o s 2 M ) +  

( 5 . 6 7 )  + g e 3 ( ~ ~ ~ M  -cos 3M) + $(cosZM - cos 4M) + . . .]. 
As regards the convergence of the ser ies  ( 5 . 5 3 ) ,  ( 5 . 5 5 ) ,  ( 5 . 6 2 ) ,  ( 5 . 6 6 ) ,  

and ( 5 . 6 7 ) ,  we should note that the derivation of ( 5 . 5 3 )  and ( 5 . 5 5 )  is based 
on the binomial expansion of ( I + c L ) ~ ,  where a is a fairly small number, 
and n an arbitrary power. The binomial se r ies  is known to converge for 
any a < l .  The ser ies  ( 5 . 5 3 )  and ( 5 . 5 5 )  are  thus convergcnt for any 6 if 

3 

e < ] .  ( 5 . 6 8 )  

More detailed analyses / 2 /  bases on inequality ( 5 . 5 9 )  show that the ser ies  
( 5 . 6 2 ) ,  ( 5 . 6 6 ) ,  and ( 5 . 6 7 )  ccnverge for all real M if  

e<O.6627.. . ( 5 . 6 9 )  

The ser ies  expansions of this section can be profitablyused in the analysis 
of orbits with eccentricity not greater than 0.2 - 0 . 3 .  
ser ies  converge very rapidly, aild only a few of the leading te rms  need be 
retained. The first  terw. of the truncated ser ics  provides an estimate for 
the accuracy of the results.  

book 1 2 1 .  
ser ies  ( 5 . 6 2 ) ,  (5 .66 ) ,  and ( 5 . 6 7 ) .  

In this case,  the 

A more detailed discussion of the theory will be found in Duboshin's 
This book also gives expressions for the general terms of the 
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5.8. ESTIMATING THE ACCURACY OF THE 
EXPRESSIONS O F  THE THEORY O F  NEARLY 
CIRCULAR MOTION 

If only the first two t e rms  a re  retained in the right-hand sides of (5.66) 
and (5.67), we arrive at equation (2.41) of a nearly circular orbit whose 
P, e, W .  and z a re  equal to those of the elliptical orbit. Thus, 

a=r,, M=cp-a, 6=lu- -o .  (5.70) 

The sums of all the t e rms  in the right-hand sides of (5.66) and (5.67) 
which contain the higher powers of e (i.e., starting with the third term) 
can be applied to evaluate the e r r o r s  introduced by the equations of nearly 
circular orbits (2.38) and (2.41). 
the accuracy can be estimated by the third term in the right-hand sides 
of the expansions (5.66) and (5.67). 
the e r r o r s  in the equations of nearly circular orbit: 

In practice (for fairlysmalleccentricities), 

We obtain the following estimates for 

(5.71) 5 1 Ar 1 4 e2rm, ]A1  I ST e ? ,  

where Ar and A1 a re  respectively the linear e r r o r s  in satellite position along 
the radius r and along the in-plane normal 1 to the radius. 

We shali show in the following that the e r r o r s  of the ''exact" elliptical 
theory, which ignores the noncentral components of the gravitational field, 
the pull of the Moon and the Sun, and various other factors, a r e  a s  large 
a s  a few tens and even hundreds of kilometers. 
theory of elliptical motion to the theory of nearly circular motion is 
therefore fully justified, in so far as A1 and Ar a re  of the order  of 5-10 km. 
From (5.71) it follows that for low-flying satellites (rm< 10,000 km) this 
requirement is satisfied if 

The transition from the 

e<0.02. (5.72) 

We recall that, for low eccentricities, the introduction of the nearly 
circular theory is further justified, not only by the exceptional simplicity 
of the relations, but also by the uncertainty in the position of the pericenter. 
As we have observed in Sec. 2 .  8, it is advisable to use formulas (2.38) 
in this case, since they a re  independent of the pericenter point. 
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Chapter 6 

HYPERBOLIC ORBITS 

6.1. PRINCIPAL GEOMETRICAL PROPERTIES 
OF HYPERBOLIC ORBITS 

As we have observed in Sec. 4.5, a body moves in hyperbolic orbit if 
i t s  flight velocity is greater than the escape velocity V from the primary, 
i.e.,  i f  

v > v = f l .  (6.1) 

The eccentricity e and the coefficient k from (4.22) and (4.23) satisfy the 
inequalities 

e>l and k > 2 .  (6.2) 

It is known from analytical geometry that for e> 1 the equation of orbit 
(4.19) in polar coordinates is the equation of a hyperbola with a focal 
parameter p and eccentricity e .  
takes the form 

In a rectangular frame SEq, this equation 

52-2-1, a* 6 2  - (6 .3 )  

where a and a re  the semiaxes of the hyperbola defined by 

(6.4) 

In the frame SEq, the axis Sg points in the direction 6= 0 through the 
center of attraction 0, and the origin S (the center of the hyperbola) is 
rl is t ant 

(6.5) 
pe y=ae== 

from the gravitational center 0 (Figure 6.1). 
The gravitational center 0 is the f i r  s t f o c u s of the hyperbola. 

The s e c o n d f o c u s 0' is on the OE axis in the symmetric point about 
the center of the hyperbola: 

1 3  



If r and f a r e  the distance from a point D of the orbit to the foci 0 and 
0', then the principal property of the hyperbola (in fact, i ts  definition) is 
given by the equality 

I r ' - r l  =2a. (6.6) 

The hyperbola defined by (6.3) o r  (6.6) is a curve with two branches. 
The first  branch, shown by the solid line in Figure 6.1, curves around the 
gravitational center 0, while the second branch (the dashed curve) curves 
away from the center. It is only the first  branch which is physically 
meaningful in our problem, since it corresponds to orbital motion 

FIGURE 6.1. Geometrical parameters of hyperbolic orbit. 

accelerated toward the center of attraction 0, i. e., in the field of an 
attractive force through this center. 
motion in the field of a repulsive force, and we shall henceforth ignore 
it. Note that in accordance with (4.19), the second branch of the hyperbola 
corresponds to negative distances r,  which is clearly impossible. 
the first  branch of the hyperbola, relation (6.6) takes the form 

The second branch represents 

Along 

r' - r=2u. (6.7) 

Unlike the ellipse, hyperbolic orbit is an open trajectory beginning 
and ending outside the sphere of attraction of the primary (i. e., outside 
the region where the gravitational pull of the primary constitutes the 
main driving force). In our analysis of hyperbolic motion, we shall 
regard the portions of the orbit outside the sphere of gravitational pull 
of the primary a s  lying "at infinity". 
to approach a straight line "at infinity". 

The hyperbolic orbit can be shown 
We rewrite exmession (6.3) as 
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a2 For 5 4 0 0 ,  we have -+O. We can therefore expand the right-hand side P 
of (6.8) in a binomial ser ies .  Thus, 

For t-00, we have 0 - +O, and the hyperbola asymptotically approaches (: 1 
one of the straisht lines 

(6.10) -q= -t ;;5. B 

These lines a re  the a s y m p t o t e s of the hyperbolic orbit. One of 
th.ese (the segment NS in Figure 6.1) is the entry trajectory of the body 
into the sphere of attraction of the primary, while the other (the segment 
SM)is the path of escape of the body from the primary. 

Seeing that 
We now return to the equation of the orbit (4.19) in polar coordinates. 

r>O, 

we have 

(6.11) 1 -- e < cos8 < 1. 

This inequality rnay be written a s  

where 

---6,<s<&V. 

P - 2 < e, = arccos (- f) < n. 

(6.12) 

(6.13) 

The angle fd- is clearly the limiting value of the true anomaly 8 as  the 

Applying (6.4) and (6.13), we write 
body recedes to infinity. 

(6.14) 

The limiting values of the true anomaly, *em, are  thus the angles between 
the asymptotes of the hyperbola to its axis Ss (see Figure 6.1). 

We see from Figure 6.1 that for  a body moving in hyperbolic orbit, the 
true anomaly monotonically increases. Motion in the interval Nn, 
defined by the inequality 

4,<6 4 0. (6.15) 

1 corresponds to a monotonic r i se  of cos 6 from cos(-+.,) =- 4 to cos(0) = 1; 

in the interval RM, defined by the inequality 

0 4 s  <6,, (6.16) 
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1 cos8  monotonically decreases from cos(0) = 1 to cos (e,) = -7. 

monotonically decreases and the body approaches the gravitational center 0, 
while in the interval I l M ,  r increases and the body moves away from the 
center 0 .  The section N I l  is therefore called the d e  s c e n d i n g branch 
of hyperbolic orbit, and the section I7M,  the a s  c e nd i n  g branch, Note 
that a moving body will t race both branches of hyperbolic orbit only if it 
travels from "infinity". In particular, this applies to an artificial Earth 
satellite trapped by the Moon's pull. If, however, a body is injected into 
hyperbolic orbit inside the sphere of gravitational pull of the primary 
(e.g., a satellite launched from the Earth with a velocity greater than the 
escape velocity), it will only describe the path from the injection point D 
to the terminal point M ,  where it escapes to "infinity" (see Figure 6.1).  

The point closest to the center of attraction 0 (corresponding to .8= 0) 
is the p e r i c e n t e r  ( p e r i g e e ,  p e r i h e l i o n ,  etc., as  the case 
may be) of the orbit. 
the p e r i c e n t e r  ( p e r i g e e ,  p e r i h e l i o n )  d i s t a n c e .  From 
(4.19), (6.4), and (6.5) we have 

Applying (4.19), we see that in the interval NU, the distance r 

Its distance rp from the center of attraction is called 

(6.17) 

From Figure 6.1 we now can find the distance from the pericenter fl 
to  the center S of the orbit: 

IlS = y - rp= a. (6.18) 

To establish the geometrical meaning of the second semiaxis /3, we 
calculate the distance OH from the gravitational center to one of the 
asymptotes (see Figure 6.1). 
of (6.4), (6.5), and (6.13), we have 

From the right triangle OSH, making use 

(6.19) 

The first semiaxis a of hyperbolic orbit is equal to the distance from 
the pericenter l7 (the vertex of the hyperbola) to the center S of the 
hyperbola. 
gravitational center 0 (the first .focus of the hyperbola) to either asymptote. 
The p-to-a ratio is the absolute value of the slope of the asymptote to the 
08 axis. 

For any hyperbolic orbit, from relations (5.2), (5.7), and (6.4), we 
can define the semiaxes of an equivalent ellipse 

The second semiaxis f3 is equal to the distance from the 

a= -a, b =  - ip,  a=lal, p = l b l .  (6.20) 

In other words, hyperbolic orbit corresponds to an ellipse with a 
negative semimajor axis and an imaginary semiminor axis. 
and (6.20) it follows that the orbital period P for this ellipse is imaginary. 
Although this imaginary elliptical orbit is physically meaningless, 
equalities (6.20) can be applied for formal extension of the relations 
derived for elliptical orbits to the case of motion in hyperbolic orbit. 

From (5.36) 
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The validity of this generalization can be verified in each particular case 
by repeating the corresponding manipulations. 

6.2. FLIGHT VELOCITY AND ENERGY 

The velocity components ut, and u,, the magnitude v of the velocity vector, 
i ts  inclination e to the local horizon, and the mechanical energy Q per  unit 
mass  can be obtained from relations (5.11), (5.13), (5.15), (5.16), and (5.22) 
Substitution of (6.20) in these relations gives 

(6.21) 

From (6.21) we see that the velocity u in hyperbolic orbit monotonically 
increases along the descending branch Nnand decreases along the ascending 
branch f I M  (see Figure 6.1). 
a s  y m p  t o t i c v e 1 o c i t  y ) corresponding to infinite recession of the 
satellite from the primary is given by 

The minimum velocity (we call it the 

vu,= fl. (6 .22)  

There is thus a one-to-one correspondence between the asymptotic 
velocity u - ,  the semiaxis a of the hyperbola, and the mechanical energy Q. 
Figure 6.2 plots the semiaxis u vs. v, for satellite encounter with the 
Earth and the Moon. (Here c i 6  denotes thc semiaxis of hyperbolic orbit 
around the Earth, and ac that around the Moon). 

0 1 2  3 4 5 6 7 8 9 ID 
km /sec 

FIGURE 6.2. Semiaxis a of hyperbolic orbit vs. asymptotic velocity 
urn for satellite encounter with the Earth and the Moon. 



The maximum velocity v p i s  attained at the pericenter. From (6.17) and 
(6.21) we have for this p e r i c e n t e r  v e l o c i t y  

where wp= I/& is the circular velocity at the pericenter IT. 
Applying (4.24) and (6.22), we write for the flight velocity 

v2=P+vL.  (6.24) 

This equality lends itself to a simple energy interpretation, Here u 2 i s  
twice the amount of kinetic energy per unit mass  of the body at the particular 
point of the orbit, Va is twice the kinetic energy which is converted to 
potential energy a s  each unit mass  recedes to infinity, v i  is twice the 
kinetic energy per unit mass at infinity. 

mass  into hyperbolic orbit around the Earth may be analogously written 
in the form 

Expression (6 .2  1) for the mechanical energy Q required to inject a unit 

(6.25) 

where V,= fi is  the velocity of escape from the Earth's surface. 

vector and the local horizon (see Figure 6.1). 
(6.2), (6.11) we see that in hyperbolic orbit 

Let us now consider th6 variation in the angle 8 between the velocity 
From (5.19) and conditions 

Hence, applying expression (6.21) for tge, we see that in hyperbolic 
orbit the angle e monotonically increases between the limits 

- + < e < + .  (6.27) 

As we move to infinity in the retrograde sense, i. e., along the path 

of approach of the satellite to the primary, e+-$ ,  which corresponds to 

a head-on collision between the satellite and the primary. 

receding path, however, 0 ++, which corresponds to motion away from 

the primary. At the pericenter n, 8=0. 

Along the 
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6.3. FLIGHT TIME 

The flight time in hyperbolic orbit is obtained from (4.19) and (5.12), 
which give 

d6- =q df. (6.28) 

To integrate this equation, we change over in (6.28) f rom the true 
anomaly 6 to a variable H, the analog of the eccentric anomaly E in 
elliptical orbit. 
in rectangular coordinates is 

We should first note that the equation of elliptical orbit 

2++1. E2 (6.29) 

The origin S of the rectangular frame SGq is at the center of the ellipse, 
the axis Sg pointing along the semimajor axis, and Sq along the semiminor 
axis (see Figure 5.3). 
(6.29) in parametric form: 

From Figure 5.3 and relation (5.24), we write 

E=acosE, q = b s i n E .  (6.30) 

Simple substitution shows that the coordinates E and q defined by (6.30) 

Substituting hyperbolic functions for the trigonometric functions in 
satisfy the equation of the ellipse (6.29).  

(6.30) and applying the identity 

we write the equation (6.3) of the left branch of the hyperbola (see Figure 6.1) 
in the parametric form 

where H is an analog of the eccentric anomaly E of elliptical orbit. 
From Figure 6.1 and relations (6.4), (6.5), we have 

(6.32) 
rcos6= y+ = a (e - ch H) ,  
r sin @ = q = $ s h  H = a  sh H .  

Squaring and adding, we have 

r = a ( e c h H -  1). (6.33) 

Hence, from the first equality in (6.32), 

I r (1 +cos e) = a(e - l)(ch H+ I), 
r(l-cos6-)=a(e+l)(chH-l). 

(6.34) 

Taking the ratio of these relations and seeing that 

& H + 1  -=shaT?-, H -=th2T, chH-1 H 
2 shH+l  -= Ch'T,  2 
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we arrive at the following definition of H: 

(6 .35)  

6 
cos2 

che 
d+ = 7 dH. 

On the other hand, from the first  equality in (6 .34) ,  we write 

Hence, 

dB. = v m  dH. 

Substituting in (6.28) and applying (6.4), we find 

dt = r e d H .  

Finally, making use of (6 .33) ,  we write 

dt = - (ech H - 1)dH. (6 .36)  
fi 

Integrating (6 .36)  in the interval from the pericenter to any point of the 
orbit, and seeing that in accordance with (6 .35)  at the pericenter 

we obtain Kepler's equation for hyperbolic orbit: 

e s h H - H = v ( t - - - ) ,  (6 .37)  

fi where Y =  -J-, and t is the epoch of pericenter passage. 

Note that relations (6 .32) ,  (6 .33) ,  (6 .35) ,  and (6 .37)  can be derived for  
the corresponding relations (5 .29) ,  (5 .30) ,  (5 .32) ,  and (5 .27)  of elliptical 
orbit on substitution 

H = i E ,  sh H=i s inE ,  chH=cosE  (6 .38)  

(making use of (6.20)). 
We shall show that equation (6 .37)  has a single real  solution for any 

N = v ( f - - ) .  (6 .39)  
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Consider the function 

F ( H ,  N )  =esh H - H - N. 
For  any N, we clearly have 

F(- 00, N) = - 00 and F(m, N).= co. 

g = e c h H -  1 > O .  

Furthermore, 

dH 

Hence it follows that for any N there is a single H, such that F ( H ,  N )  =O,  

In solving Kepler’s equation for hyperbolic orbit by the method of 
which is in fact the solution of Kepler’s equation. 

successive approximations, it is advisable to replace scheme (5.35) with 
the relation 

s h H  “ - 7 3  - N + H n - l  (6 .40)  

where H,,, and H, are  the preceding and the current approximations of H. 
As the first approximation, we may always take Ho= 0. 

relation (6.35) and the fact that the angle 0 monotonically increases between 

the limits --6,<0<-6,. Hence it follows that t h T  monotonically increases 

from - 1 to 0 on the descending branch of the orbit and from 0 to + 1 on the 
ascending branch. H should also monotonically increase, ranging from 
-CO to 0 on the descending branch and from 0 to +a on the ascending branch. 

Let us now consider how H varies along the orbit. We shall apply 

H 

6.4. ELEMENTS OF HYPERBOLIC ORBIT 

Like elliptical orbit, hyperbolic orbit is completely defined by six 
independent orbital elements (see Sec. 5.4). 
the set of hyperbolic elements comprising the parameters a, e, 2, i, Q, w .  
All the elements, with the exception of the semiaxis a, a re  the same as  for 
elliptical orbit. We shall list the relations which a re  used in calculating 
the orbit (i. e., the coordinates and the velocity components of a body at 
any point) from known values of the orbital elements. In collecting these 
relations, we proceed from expressions (4.19), (6.4), (6.21), (6.33), (6.35), 
(6.37), operating in the coordinate system Om of Figure 5.4. 

As an example, let u s  consider 

We have : 
f = = a(echH - l), p = a(ez - I), 1 + e c o s 6  

U = 0 + 6 ,  

tET.+  e s h H - - H  V T  

v, = fl e sin 6, 

v v=- ’ 

th = ( S t g G ,  

vu=+-= I/- f i ( l + e c o s  +). 

(6.41) 
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These formulas define the motion of the body in the orbital plane, The 
last six formulas in (5.37) can be applied to reconstruct the motion in the 
three-dimensional rectangular frame Oxyz (see Figure 5.4). 

with the set  (6.41), a s  the argument which defines the position of the body 
in hyperbolic orbit. The t rue anomaly 6, however, is somewhat inconvenient 
if we a re  to determine the motion at large distance from the primary; in 
this case the true anomaly approaches the asymptotic values +-e,, so that 
small changes in 6 correspond to considerable displacements along the 
orbit, which inevitably lowers the accuracy of the calculations in terms 
of this argument. 

determined a s  functions of the arguments H o r  t ,  it is unnecessary to 
proceed with the explicit calculation of 8. 
w e  have 

Any of the three parameters 6, f ,  and H may be assumed, in conjunction 

In certain cases, when the coordinates and the velocity components a re  

From (6.4), (6.32), and (6.33) 

m s h H  e - c h H  
e c h H - - l  I case=- e c h H - 1  ' 

sin 6 = (6.42) 

From these relations, making use of (6.21), (6.32) and passing to the 
rectangular frame Ogqg of Figure 5.5, we have 

(6.43) 

The transformation from Ogqg to Oxyz is defined by the matrix of 

The above relations a re  suitable for calculating the initial conditions 
direction cosines in Sec. 5.5. 

of motion (the coordinates and the velocity components at the epoch t=to) 
from the elements of hyperbolic orbit. 
i. e.,  determination of the elements a, e, z, i, Q, o of hyperbolic orbit from 
the initial conditions x0, yo, zo, uxu,vyo, urn, can be obtained from (5.49). 
suffices to put a z - a  in these equations, substituting the following 
expressions for the las t  three equalities in (5.49): 

The solution of the reverse  problem, 

It 

(6.44) 

Note that if  the point of origin (corresponding to the epoch f - f , )  is f a r  
f rom the primary, formulas (6.44) a re  not quite convenient for  the 

calculation of H o  and Z, since for th- f+I ,  Ho is determined with low 

accuracy. In this case, the last equality in (6.44) should preferably be 

n 
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replaced with the relation 

% + l  
ch Ho= - e *  

which follows directly from (6.33). 

(6.45) 

6.5. GROUND TRACKS OF HYPERBOLIC ORBITS 

Ground tracks of hyperbolic orbits (i. e., the projections of these orbits 

To find the ground 
on the surface of the rotating Earth) a re  essentially different from the 
ground tracks of circular orbits described in Sec. 1.3. 
track of hyperbolic orbit, we calculate drom (1.12), (1.15), and (6.41) the 
height h of the body above the Earth 's  surface, the latitude B and the 
longitude L of i ts  projection on the Earth 's  surface, and then plot the 
calculated points on a map. 

As an example, Figures 6.3 and 6.4 show ground tracks of orbits with 
the elements a =  16,00Okm, e =  1.5, T = o = O .  Figure 6.3 corresponds to 
an orbit with inclination i =  65" (direct west-east motion), and Figure 6.4 
to an orbit with i =  135" (retrograde east-west motion); Q has been chosen 
setting L =  0 for t = 0. 
and the abscissa the longitude L . 
marked for the various points of the ground track. 

From the graphs in Figures 6.3 and 6.4 we see that when the body is at 
large distances from the Earth, its ground track is close to some parallel. 
From (1.12), (1.15), (6.12), and (6.41) it follows that in the limit, with the 
body at infinity, the latitude of this parallel approaches the value 

In the two graphs, the ordinate gives the latitude B ,  
The flight height h in kilometers is 

B,= arcsin[sin(ot&)sin i], (6.46) 

where 6, is  defined by (6.13); the sign + corresponds to the ascending branch 
of the orbit, and the sign - to the descending branch. 
rate of displacement of the ground track in longitude approaches the spin 
rate of the Earth (i .  e.,  15"2'28' '  per hour from east to west). 

As the body approaches the Earth, i ts  ground track progressively 
deviates from the limiting parallel. 
evolves into a curve of the type shown in Figures 6.3 and 6.4. 

0 4 i 4 ;, the ground tracks a re  confined to the belt - i ,< B 4 i, and for 

ndi4n  they lie inside the region i - n d B Q n - i .  2 

tangent at one point to the northern boundary of the belt, and at one point 
to the southern boundary. 

approaching the Earth from infinity. 
into hyperbolic orbit near the Earth will show only part of the curves 
depicted in Figures E.3 and 6.4 (from injectioa point to recession toinfinity). 

Note that the angular 

Near the perigee, the ground track 
For  

The ground tracks are  

The ground tracks in Figures 6.3 and 6.4 are  clearly those of bodies 
The ground tracks of bodies injected 
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FIGURE 6.3. Ground track of a hyperbolic orbit with semiaxis a= 16,00Okm, eccentricity e= 1.5, 
and inclination i =  65'. 
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FIGURE 6.4. Ground track of a hyperbolic orbit with semiaxis a = 16,000 km, eccentricity e = 1.5, 
and inclination f = 115". 
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6.6. HYPERBOLIC FLY-BY ORBITS 

In this section we shall consider the influence of a center of attraction 
on the motion of a body which approaches from infinity. 
of the body relative to the gravitational center and the direction of the 
incoming asymptote NS (the initial unperturbed path of the body) a r e  known. 
It follows from the preceding that near the gravitational center the body 
will move in hyperbolic orbit. 
the center of attraction 0 and the line N S .  

The initial velocity 

The plane of this orbit is the plane through 

FIGURE 6.5. Hyperbolic fly-by orbit. 

Let us consider in greate'r detail the principal characteristics of motion 
in this plane. 
gravitational center 0 is known (Figure 6.5): we have shown in the preceding 
that $ is the second semiaxis of the hyperbolic orbit. 

From (6.4), (6.5), (6.13), (6.14), (6.17), and (6.22) we obtain expressions 
for the f i rs t  semiaxis a of the hyperbola, the eccentricity e ,  the pericenter 
distance r ,=On,  the distance y=OS from the gravitational center to the 
center of the hyperbola, and the angle &.,=LNSg between the initial direction 
of motion and the axis of the hyperbola: 

The distance p from the incoming asymptote NS to the 

The parameters 

1 

em= arccos (-+) = arctg -- ( 9- I 
(6.47) 

and e define the shape and the s i z  of the hyperbolic 
orbit, whereas y and 8, specify the direction of the hyperbola axis 05 and 
the position of its center S. 

to infinity along the second asymptote SM through the center S of the 
hyperbola. 
distance $ from the asymptote SMto the center 0 a r e  equal to the 

After its encounter with the gravitational center, the body will escape 

The relative velocity v,  of this asymptotic motion and the 
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corresponding values for the initial (unperturbed) motion. 
has only altered the direction of the relative velocity. 
and Figure 6.5, we find an expression for the angle between the initial and 
final velocity vectors: 

The encounter 
From relations (6.47) 

Let 

where 

Physically, wB is the circular velocity at the distance r = p .  
From (6.47) -( 6.49) we have 

Differentiating , 

6 = 2 arcsin - - - 2 arctg x ,  

f p = $ ( V W -  x). 

d6 2 

1 <o. 

(6.48) 

(6.49) 

(6.50) 

(6.51) 

(6.52) 

Hence it follows that a s  x increases from 0 to 00, the angle of rotation 

monotonically r i s e s  from 0 to 2n, whereas the ratio $' monotonically 

decreases from 1 to 0 .  

produced by the center of attraction. 
a brief encounter at a large distance from the center 0. 
is hardly distorted, and the pericenter distance rp scarcely departs from 6. 
For a close encounter ( x >  l), the direction of the initial velocity is almost 
reversed, and the pericenter distance sharply diminishes ( rp<<@). 

be replaced with the approximate relations 

The parameter x numerically characterizes the degree of perturbation 
Small x correspond to the case of 

The initial path 

Note that for x< 1 (brief remote encounter), expressions (6.51) can often 

(6.53) 

To illustrate the influence of the primary on a fly-by orbit, let us  
consider Figures 6.6 and 6.7. 
with B =  const and various 0,. 

with vm= const and various p .  
gravitational center Droduces a characteristic scattering effect. 
is of considerable applied significance. 
comparatively small  e r r o r s  in the parameters of initial motion multiply 

The first figure depicts a bunch of orbits 
The second figure shows a bunch of orbits 
W e  see  from these figures that the 

This point 
For example, in close encounter, 
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out of all proportion, and the determination of the final motion is hopelessly 
inaccurate. After the encounter, the orbital elements must often be 
determined anew, and in case of mission flight, midcourse trajectory 
correction is inevitable. 

f 

FIGURE 6.6. Scattering of a bunch of 
hyperbolic orbits with p =  const and 
various woo 

FIGURE 6.7. Scattering of a bunch of 
hyperbolic orbits with wm= const and 
various B. 

Aside from the scattering of orbits, which becomes particularly 
pronounced at large distances from the gravitational center, the bunch 
is often compressed near the pericenter. To establish this effect, we 
f i rs t  consider the relation between the variations A@ in the distance from 
the incoming asymptote to the center of attraction and the variations Arp 
in pericenter distance. 
applying (6.49), we find 

Differentiating the equation for rp in (6.47) and 

(6.54) 

Hence it follows that Arp<A$. A bunch of orbits with various fi (and 
v, = const) is thus compressed near the pericenter. 
particularly distinct for x> 1 (i. e.,  in the case of close prolonged encounter). 
The probability of the body reaching a certain neighborhood of the pericenter 
is therefore correspondingly higher. 

This compression is 

6.7. HYPERBOLIC ESCAPE ORBITS 

Let us consider the motion of a body which, at the point D, has been 
injected into hyperbolic orbit with a sufficiently high velocity uo (Figure 6.8). 
We have shown in the preceding that the final outcome of motion in this 
orbit is the escape of the body from the Earth 's  pull along the asymptote 
SM( S being the center of the hyperbolic orbit). The motion along this 
straight line is characterized by the velocity v ,  the inclination 8, of the 
line SM to the horizontal at the injection point D, and the distance 3 from 
the line SM to the Earth 's  center 0. In this section we  shall consider the 
dependence of these quantities on the initial values of the velocity uo, the 
inclination eo of the velocity vector to the horizon, the distance ro of the 
injection point D from the Earth's center, and the coefficient 

( 6 . 5 5 )  
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where V O = e  is the velocity of escape from the Earth at the injection 

point D .  
Note that for hyperbolic orbit 

vo>Vo, ko>Z (6.56) 

whereas the case UO= VO, k0=2  corresponds to a parabolic trajectory. 
Applying (5.49), (6.20), and (6.22), we have 

(6.57) 

We see  from this relation that a s  ko increases from 2 to w the ratio 

5 monotonically r i ses  from 0 to 1. The case k o = 2 .  v,=O corresponds 
WQ 

to a projectile which loses its entire initial kinetic energy to overcome the 
Earth 's  gravitational pull (parabolic orbit), whereas the case ko+oo,  um+vo  
represents injection with a very large velocity vo, s o  that the Earth 's  
gravity has hardly any influence on the motion of the body. 

5 

FIGURE 6.8. Hyperbolic escape orbit. 

To find the angle ern, let Si in Figure 6.8 be the intersection point of the 
hyperbola axis Sg with the horizontal at the injection point D. Then, 

where % and 6, a re  the initial and the asymptotic values of the true anomaly, 
defined by (5.49) and (6.13). 
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Figure 6.9 plots the angle ern a s  a function of Bo and ko.  We see from 
the graphs that the angle 8,monotonically increases with 00 and ko. For  
small ko ( k o = Z ) ,  8, VS. 60 is almost the linear function characteristic of 

' for  o,=o, R,--l 
for 9,- & E ,  

e,= - arcsin 

ern=; 2 

~ m = t z ~ O - ~  for  k , = 2 ,  

FIGURE 6.9. 

horizon vs. the injection angle Bo for hyperbolic orbits with various ko= d. 
The asymptotic inclination e, of the velocity vector to the 

P 

parabolic orbit ( k o = 2 ) .  
values of the angle 9, 

From (5.49) and (6.13) we have for the limiting 

(6.59) 

From (5.49), (6.4), (6.19), and (6.57), we find the following relation for  
the distance f3 f rom the asymptote to the Earth's center: 

We see from this expression that the distance $ monotonically decreases 
with the increase in the coefficient ko. If k 0 + 2 ,  we have fi+oo, and if  
ko -+ 00, then fi -+ ro cos e& 
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Chapter 7 

PARABOLIC AND VERTICAL ORBITS 

7.1. PRINCIPAL GEOMETRICAL PROPERTIES 
OF PARABOLIC ORBITS 

We have observed in Sec. 4.5 that for  k =  2 the orbit is parabolic. 
(4.22) it follows that the eccentricity of this orbit is e =  I ,  and equation 
(4.19) takes the form 

From 

This is the equation of a parabola with its focus at the origin (i. e., at 
We see  from this equation that all parabolas the center of attraction 0). 

a re  similar, differing only in the linear magnitude of the parameter p 

FIGURE 7.1. Geometrical parameters 
of parabolic orbit. 

(Figure 7.1). The line 6 =  0 through the focus is the a x  i s o f t h e 
p a  r a b  o 1 a (it is the symmetry axis of the curve). The main geometrical 
property of a parabola (which may be regarded as  i ts  definition) is 

where r is the distance from a current point D on the parabola to the focus, 
and r'the distance from D to the directrix, i. e.,  the line MN perpendicular 
to  the axis of the parabola and distant p from the focus. 

From (5.2) and (6.4) we see that, upon passing from an ellipse to a 
parabola, the semimajor axis a+ 00, while upon passing from hyperbolic 
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orbit to a parabola a+m. In other words, for  parabolic orbit we may take 

From (7.1) it follows that for  motion in parabolic orbit, the true anomaly 
6 var ies  between the limits 

--n<6<n. ( 7 . 3 )  

As 6 approaches * T ,  the distance 14 00. Hence it follows that parabolic 
orbit, like hyperbola, is an open curve: for --n<6<0 the body approaches the 
gravitational center (the descending branch of the orbit), and for  0<6<n 
it recedes from the center (the ascending branch of the orbit). The 
pericenter point corresponds to zero true anomaly, 6 = 0. 
(minimum) distance from the center 

The pericenter 

rp =%. (7.4) 

The lack of asymptotes is a distinctive feature of the parabola, 
distinguishing it f rom the hyperbola. 
(6.60), which imply that for  e - t l  and k 4 2 ,  we have p-*oo(for p # O  and 

This follows directly from (6.4) and 

ro cos 00 =+ 0). 

7.2. FLIGHT VELOCITY AND ENERGY 

The velocity components vu and vr in parabolic orbit, the magnitude of 
the velocity vector u ,  the angle 0 between the velocity vector and the local 
horizon, and the mechanical energy Q per unit mass  a re  obtained from 
(6.21), where we set  e =  1, a = m .  Thus, 

We see from these expressions that the velocity u in parabolic orbit is 
constantly equal to the velocity of escape V of the body from the primary. 

This velocity increases from 0 to u P = 2 e  a s  the body travels down the 

descending branch, and again decreases to 0 a s  the body moves up the 
ascending branch of the orbit. A characteristic feature of parabolic 
orbits (as  distinct from hyperbolas) is the vanishingly small velocity 
at large distances from the gravitational center. 

The angle 8 between the velocity vector and the local horizon 
monotonically increases from -nl2 to + n / 2  in parabolic orbit. 
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The energy Q per  unit mass ,  which is expended when the body is injected 
into a given orbit from the Earth's surface, is constant for all parabolic 
orbits: it is equal to the energy which should be imparted to a body if  it 
is to escape to infinity from the ground. 

7.3. FLIGHT TIME 

The flight time in parabolic orbit is found from (6.28) and (7.1)' whichgive 

Note that 

Applying this expression and integrating equation (7.6) in the interval 
from the pericenter to an arbitrary point of the orbit, we obtain Kepler's 
equation for  parabolic orbit: 

where z is the epoch of pericenter passage. 
Let 

2fi (t--7)=M. tg,=E* -p- 6 

(7.7) 

(7.8) 

The determination of the true anomaly 6 at a given instant t clearly 
reduces to the solution of the cubic 

F ( E )  = T P + g - M = 0. (7.9) 

This equation has a single real  solution, since 

dF F ( - - ,  M)=-oo, F ( m ,  M ) = Q ~ ,  q - = E ' + t  > 0. 

7.4. ELEMENTS OF PARABOLIC ORBIT 

Motion in parabolic orbit imposes a certain a p r i o  r i restriction on 
the trajectory of the body (in virtue of the condition v = V ) ,  so that all 
parabolic orbits (unlike elliptical and hyperbolic ones) a re  described by 
five, and not six, elements. As an example of a complete set  of orbital 
elements, let u s  consider the parameters, p , ~ ,  i, S?,, o. 
(7.5), and (7.7), we list the formulas used in determining the coordinates 

Applying (7.1), 

92 



and the velocity components in parabolic orbit from known orbital elements: 

(7.10) 

These formulas define the motion of a body in the orbital plane. The 
transformation to the space frame Oxyz (see Figure 5.4) is effected with 
the aid of the last six relations in (5.37). 

on the set (7.10) it is often advisable to take g =  tg?, and not the true 

anomaly 6, a s  the independent variable: this quantity monotonically varies 
from - 00 to + 00 in orbit. 
the fact that, at large distances from the primary, small changes in the 
angle 6 correspond to considerable displacements along the orbit. 

When determining the elements of a parabolic orbit from known initial 
conditions of motion (i. e., the parameters XO, yo, 20, vr0, q,~, U,O at the epoch 
t=to) ,  ko must be calculated from (5.49) in order  to verify that the condition 
of launch into parabolic orbit is in fact satisfied ( k o =  2). 
the elements Q,, f, ut), Bo, ro a re  calculated. 
from the relations 

Note that in calculations based 
6 

This substitution of variables is justified by 

Then, from (5.491, 
Further computations proceed 

(7.11) 

which a re  derived directly from (4.18), (7.1), (7.51, and (7.7) 

7.5. TYPES OF VERTICAL ORBIT 

As we have observed in Sec. 4.4, the equation of the orbit (4.19) is 
derived under the assumption that the integration constant (4.21) is not zero: 

In this section, we shall consider motion with zero integration constant: 

c=rv COS e=o. (7.12) 

This condition holds true if at least one of the following equalities is 

satisfied: r=O, v = O  o r  0 =  f $. 
at  an arbitrary point of unperturbed orbit (at a finite distance from the 

Any one of these exact equalities obtaining 
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gravitational center) is a sufficient condition for the orbit to coincide with 
a certain vertical straight line (i. e., a straight line through the center of 
attraction), 

In our analysis of vertical rectilinear motion, we shall take o>O for  a 
body receding from the gravitational center ( e  = r / 2 )  and u<O for a body 
approaching the gravitational center ( e = -  r / 2 ) .  Let ro and vo be the initial 
radius and velocity at a certain starting time t = f o .  Applying the energy 
integral, we write for any point of the vertical orbit 

where 

(7.13) 

(7.14) 

It follows from these expressions that three distinct cases of vertical 
motion a re  possible, depending on the initial value ko. 

(1) ko<2, a>O. From (7.13) and the condition oz>O we have 

0 < r <2a. (7.15) 

This case corresponds to oscillatory vertical motion from the center 
of attraction to a maximum (apocenter) height of 

r ,=2a.  

From (7 .13)  we have for  this case 

I v=O for r=2a, 
v + w  for r - 4 .  

(7.16) 

This motion can be interpreted a s  a limiting case of elliptical orbit 
with asconst, b - + O , e + l .  We therefore refer to it a s  v e r t i c a l  
e l l i p t i c a l  m o t i o n .  

center varies between the limits 
(2)  &=2, a= 00 . Here the distance of the satellite from the gravitational 

O < r < w ,  (7.17) 

and the flight velocity 

9 4 0  for  r + m ,  
v-+w for r+O. 

(7.18) 

This is a case of v e r t i c a l  p a r a b o l i c  m o t i o n ,  i . e . ,  flight in 

(3) &>2, a<O. The distance r varies between the same limits (7.17), and 
parabolic orbit with p 0. 

the flight velocity is 

(7.19) 
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This motion obtains a s  the limiting case of hyperbolic orbit with a=const, 
e + ] .  We call it v e r t i c a l  h y p e r b o l i c  m o t i o n .  

7.6. VERTICAL ELLIPTICAL MOTION 

We proceed with a more detailed analysis of vertical elliptical motion. 
To find the distance r as  a function of flight time t ,  we substitute the 
eccentric anomaly E as  the new independent variable (compare with the 
procedure adopted in the analysis of curvilinear elliptical motion). 
e + l  in (5.30), we find 

Taking 

r = a ( l  - cosE) ,  (7.20) 
whence 

dr d E  
dt dt * 

v =- =a sin E - (7.21) 

Substituting (7.20) and (7.21) in (7.13), we obtain after some manipulations 

-=Ir-. dE 1 
dt a% 1 -cos E 

(7.22) 

Integrating, we obtain Kepler's differential equation of vertical elliptical 
motion: 

E - sin E =g(t - z), (7.23) 

where z is the epoch corresponding to E=O, r=O. 

is uniquely solvable. In other words, for  any t there is a single E. The 
parameter E may therefore be introduced a s  the independent variable of 
vertical elliptical motion. From (7.20) -(7.23) we  obtain the parametric 
equation of the orbit: 

Applying the method suggested in Sec. 5.3, we can show that this equation 

f = z+- (E  -sin E), fi 
r = a ( l  - C O S E ) ,  I (7.24) 

As the eccentric anomaly E goes from 0 to T, the distance r increases 
to 0) ,  the distance 

Vertical elliptical motion thus reduces to linear oscillations between 

from 0 to 2a, and a s  E goes from n to 2n (or from - 
r decreases from 2a to 0. 

the points 0 and A (Figure 7.2). At the apocenter point A, the velocity 
u=O. The pericenter is located at the center of attraction 0. Here u= 00. 

Note that in reality the approach to the center of attraction is limited by 
the size of the primary. The part OB of the orbit, which lies inside the 
primary body, is therefore physically unfeasible. The entire orbit falls 
into two parts: the ascending branch BA and the descending branch A B .  
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In practice, the body may pass  only once from the ascending to the 
descending branch, at the apocenter A .  Reverse transition is virtually 
impossible. 

FIGURE 7.2. Types of vertical orbits 

From (7.24) it follows that vertical elliptical orbit is fully described by 
four elements: the parameterc a, 7 ,  and two angles specifying the direction 
of the straight line of motion. 

conditions by making use of expression (7.14) for ( I .  

from (7.24): 

The elements of vertical orbit can be determined from the initial 
The epoch z is obtained 

(7.25) 

7.7. HYPERBOLIC AND PARABOLIC VERTICAL MOTION 

Vertical hyperbolic orbit is investigated like its elliptical analog. A 
new independent variable H is defined by 

where 

From (7.13), we have 

dH 
dt ’ 1 v=ashH- 

(7.26) 

(7.27) 

(7.28) 

Integrating, we obtain Kepler’s equation for vertical hyperbolic orbit: 

shH-H==(t--t), & (7.29) 

where T is the epoch corresponding to H = O ,  r=O.  
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Like in Sec. 6.3, it can be shown that equation (7.29) is always uniquely 

H is adopted a s  the independent variable. 
solvable. 

and (7.29), we obtain the following equations of vertical hyperbolic orbit: 
Then, from (7.26), (7.28), 

(7.30) 

As H goes from --oo to 0, the distance r decreases from UJ to 0, and 

From (7.30) we see that hyperbolic vertical orbit is fully defined by 
a s  H varies from 0 to --oo, the distance r increases from 0 to 00. 

four elements: the parameters a, T, and two angles specifying the direction 
of the straight line of motion. 

relations 
To find the time t f rom known initial conditions, we make use of the 

In parabolic vertical motion, equation (7.13) takes the form 

whence 

(7.31) 

(7.32) 

(7.33) 

The sign + corresponds to recession from the primary, and the sign - to 
approach. 

Integrating, we find 

(7.34) 

where z is the epoch corresponding to r=O. 
Relations (7.33) and (7.34) define the vertical parabolic orbit, which is 

described by three elements: the epoch z and two angles. 
It follows from the preceding that hyperbolic and parabolic vertical orbits 

represent motion along an infinite half-line CJM (Figure 7.2). The pericenters 
of these orbits a re  at the center of the primary body 0. The pericenter 
velocity v=w.  A certain section OC of the orbit lies inside the primary, 
so that arly transition from the descending branch MC to the ascending 
branch CM or back is virtually impossible. 

In conclusion note that we approached vertical motion a s  a limiting 
case of the respective conical orbits. A n  immediate consequence of this 
approach is that after encounter with the center of attraction, the direction 
of flight is reversed, changing by 180". Although in reality circumnavigation 
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of the gravitational center is unfeasible, these vertical orbits a re  of some 
applied interest for the investigation of the asymptotic properties of motion 
in highly elongated curvilinear orbits. 
also apply, with sufficient accuracy, to the analysis of motion in curvilinear 
orbits at great distances from the primary. It must be borne in mind, 
however, that in reality, proper vertical motion (i. e., motion exactly 
through the center of attraction) does not result in reversal  of the velocity 
vector. Having passed through the point 0, the body wi l l  move on along 
the lines OA' or OM'. This solution of the equations of vertical motion, 
though mathematically correct,  is clearly meaningless in practice. 

The equations of vertical motion 
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ChaDter 8 

a > 0. p > 0 
a = 00. p > 0 
a < 0, p > 0 

DETERMINATION OF ORBIT FROM TWO 
KNOWN POSITIONS OF THE SATELLITE 

Elliptical a > 0. p e 0 Verzical elliptical 

Parabolic a - a. p = 0 Vertical parabolic 

Hyperbolic a < 0. p - 0 Vertical hyperbolic 

8.1. STATEMENT O F  THE PROBLEM 

A common problem in the determination of orbits or transfer trajectories 
of artificial Earth satellites and other space vehicles calls for orbit 
inference from two known positions D, and Dz in space at the times ti and f. 
Each of the points Di and Dz is defined by three coordinates, which a re  
functions of the six orbital elements. The problem therefore reduces to 
the solution of a set of s ix  transcendental equations in six unknown orbital 
elements. 
equations. 
also describe one of the numerical techniques of solution. 
we shall assume the following basic set  of orbital elements 41 ( i =  1, 2,. . ., 6 ) :  
the longitude of the ascending node a, the inclination of the orbit i ,  the 
semimajor axis a,  the parameter p ,  the argument of the pericenter o, 
and the epoch of pericenter passage T. 

kinds of orbits. 
orbit in accordance with the list in Table 8.1. 

The aim of the present chapter is to investigate this set  of 
We determine the number and the nature of its solutions, and 

In our analysis 

This is a universal set of elements, which is very convenient for all 
The numerical values of a and p define the type of the 

TABLE 8.1 

Orbital 
Orbital Type of orbit 

elements 

The epoch t t  is assumed as  the starting instant, and the flight time 
A f = t z - t t i  between the two positions is known; the polar coordinates rf, ui 
and rz, uz of the points Di and D2 in the orbital plane a re  also given (Figure 8.1). 
Without loss of generality, we take O<u~-ui<2n.  This condition can 
always be satisfied if  the angle ui or  u2 is adjusted by a multiple of 2n. 

of attraction counterclockwise along the trajectory DiADz or clockwise 
along the trajectory DiBDz. Furthermore, if the body moves in elliptical 

There a re  two paths from point Di to Dz: by circumnavigating the center 
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orbit, it may have completed one or several  revolutions around the primary 
0 before arriving at the point D2 at the time t z .  The angular distance A@ to 
be covered by the body on i ts  way from point D, to D2 in the t ime A t = t z - f l ,  
may therefore take any of the v-l a UeS 

A@= 12nn + (u2 - ul)l, (8 .I) 

where n is a certain integer, the values n= 0, 1, 2 ,  3 , .  . . corresponding to 
motion in the direction of increasing u ,  and the values n =  - 1, - 2, - 3 , .  . . 
to motion in the direction of decreasing u.  

FIGURE 8.1. Transfer trajectories 
between two points. 

It is clear that each A 6  f rom (8.1) in general corresponds to a different 
It is therefore advisable to state the problem as follows: given the orbit. 

coordinates of the points Di and D2 and the intervals A 6  and A t ,  find the 
type of the orbit (whether elliptical., hyperbolic, or  parabolic) and calculate 
its elements. 

We shall f i rs t  consider the case when the points D1, D2, and the primary 
0 are  not colinear. Since the points D1, Dz, and 0 always l ie in the orbital 
plane, then, given the coordinates of these points, we can easily find the 
orientation of the plane and hence the elements a and i. Depending on the 
particular value of A@, the following two cases a re  possible. 

and i are  calculated from (5.49), 
substituting the coordinates xi, yi. zi of the first  point for XO, go, zo and the 
coordinates x2, yz, zz of the second point for vXo, vyo, v ~ .  

sJbstituted for xo, go, zo and the coordinates xi,pi, zI of the first  point a r e  
substituted for vro, vyo, va. 
contained in the angle A@. 

the two points ( Di or D2) a re  known, the epoch z can be determined from 
(5.49), (6.44), and (7.10). 
of motion in the orbital plane and determination of the parameters a, p ,  w 
for known Ti, r2, uir A@, arid A f .  

developed by M. F. Subbotin / 2 6 /  for orbit determination; this method is 
based on the solution of the Euler -Lambert equation. 
we know, gives the time A t  as a function of the parameters ri, f a ,  A@, and a. 

(1) For  O<A@-2nn<n, the elements 

(2 )  For  n<A@-22nn<2n, the coordinates x2, y2, z,of the second point are 

Here n is the number of complete revolutions 

If the elements a, p ,  (1)) and the time of passage of the body through one of 

The problem thus reduces to an investigation 

In our treatment of this problem, we shall proceed from the method 

This equation, as 
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By solving this equation, we find the semimajor axis a without previous 
knowledge of the other orbital elements. 
that a is known, and proceed to determine the elements p and o from known 
values of ri, 12, ui, Af), and a. 
derivation and investigation of the Euler -Lambert equation. 
of this chapter, we consider various particular cases obtaining for colinear 
disposition of the points Di, &, 0 (specifically, the case when the points Di 
and DZ coincide). 

In Sec. 8.2 we therefore assume 

The subsequent sections are  devoted to 
At the end 

8.2. DETERMINATION OF THE ORBIT WEEN a IS KNOWN 

When a is known, and the flight time A t  is arbitrary, the orbit through 
two given points can be found with the aid of a geometrical construction. 
The following cases a re  possible. 

FIGURE 8.2. 
points when the semimajor axis Q is known. 

Determination of elliptical orbit through two given 

A. a>O. The orbit is an ellipse. Let 0' be the second focus of the 
ellipse, and r;,  r; the distances of the points Di and Dz from this focus 
(Figure 8.2a). From (5.5) we have 

(8.2) r; = 2a - rl ,  ri = 2a - r,. 

The parameters r; and r; define the position of the focus 0'. By drawing 
a circle of radius r; around the point Diand a circle of radius r; around the 
point D% we arrive at one of the following three cases:  

From (8.2) we see that this is equivalent to the condition 
(1) r ;  +r; <s, where s is the distance between the points D, and D2. 

(8.3) 
a < r r + r 2 + s  

4 .  

The circles do not intersect and the problem is unsolvable. 
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(2) r;+r;=s, which is equivalent to the condition 

rS4- r2 4- 8- , a =  4 (8.4) 

The circles have a common tangent, and the second focus 0' is at the 

(3)  
point of tangency, on the line D1D2. 

r ; + r ; > s ,  which is equivalent to the condition 

The circles intersect and two orbits a r e  obtained, with the second foci 

Having found the position of the second focus O', we can easily calculate 
at the intersection points 0; and O;, respectively. 

the parameters p and w .  The calculations are  made from the expressions 

p = a ( l - e e 2 ) ,  e=- , o=Q~+L D,OO'fn, 

whose derivation is obvious from Figure 8.2 b, and also from relations 
(5.2) and (5.4). 

There a re  thus four possible transfer trajectories between the points 
D1 and Dz. which a r e  all arcs  of elliptical arbit with semimajor axis (1; 

the possible trajectories a re  DiPtDa, DIP&, Q Q I D z ,  DiQ& (see Figure 8 . 2  a). 
If the sense of motion around the gravitational center 0 is specified (or 
if Aft, Afhf-n, is known), the number of pqssible trajectories is reduced 
to two (in Figure 8.2 a,  counterclockwise motion and A6Cn corresponds to 
the paths DIPiD:, and DlP2Dz, while clockwise motion and Aft>n to the 
trajectories DIQiDz and DlQ2D2). The elliptical trajectories D i p 1 4  and DiQzDz 
both correspond to a case when the second focus is located outside the 
elliptical segment enclosed by the line D1Dz and the trajectory. 
of this type willbe called e l l i p t i c a l  t r a j e c t o r i e s  ( o r b i t s )  of 
t h e  f i r  s t k i n d  . If the second focus is located inside the corresponding 
elliptical segment (the paths DiPzDz and DIQID1),  we speak of e 11 i p t i c a 1 
t r a j e c t o r i e s  ( o r b i t s )  of t h e  s e c o n d  k i n d .  If a is defined by 
(8.4), the trajectories of the first and the second kind merge into one, 
so-called 1 i m i t  i n g  t r 9 j e c t  o r y  . 
apply equation (6.7), which gives 

Paths 

B. a<O. The orbit is a hyperbola. To locate the second focus O', we 

r; = 2a + r l ,  r;= 2a+r2, (8.7) 

where a=-a, r ;  and r; are  the distances of the points DI and Dzfrom the 
second focus 0'. 

To find the point O', we draw a circle of radius r; around the point Di 
and another circle of radius r; around &(Figure 8 . 3  a). 
always meet at two points 0; and O;, since 

These circles 

r; +r; = 4a+ rl f r, > s. (8.8) 

The intersection points represent two possible positions of the second 
focus of the hyperbola. From elementary geometrical properties of 
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hyperbola we see that AfKn corresponds to  a case with the foci 0 and 0; 
on the two sides of the line DiDa, while Afr>rr. corresponds to a case with the 
foci 0 and 0; on one side of that line. Fo r  A@=n the position of the second 
focus cannot be determined unambiguously, unless the sense of motion 

a)  b) 

FIGURE 8.3 .  Determination of hyperbolic orbit through two given 
points when the semimajor axis a is known. 

f rom D+ to &around the center 0 is known, 
known, then, seeing that i t  is the convex side of the hyperbola which always 
faces the second focus, we obtain a single-valued solution of the problem. 
The parameters p and o can be determined from Figure 8 .3  b, and also 
from relations (6.4) and (6.5), which give 

If the direction of motion is 

C. a= +oo. The orbit is a parabola. To find the directrix MN of this 
parabola, we draw a circle of radius r ,  around the point Di and another 
circle of radius f2 around &(Figure 8.4). From (7.2) it follows that the 

FIGURE 8.4. Determination of parabolic orbit through 
two given points. 

directrix of the parabola is the common tangent of the two circles. 
such tangents can be drawn ( McNl  and M2N2), on the two sides of the 

Two 
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gravitational center 0. 
circumnavigating the center 0 in two different directions (the parabola 
always turns the convex side to its directrix). 
motion is known (or  if A*, Aefn ,  is given), the problem is uniquely solvable. 

The elements p and o of the parabolic orbit can be calculated once the 
axis of the parabola has been found. 
center of attraction at right angles to the directrix MN. ( P  is the 
intersection point of the axis with the directrix.) As for  hyperbolic orbit, 
we have 

p = OP, I UI +LD,OP. (8.10) 

These two directrixes define two parabolic orbits, 

If the sense of orbital 

The axis is the line OP through the 

8.3. AREA OF ELLIPTICAL SECTOR 

As we have previously observed, the Euler -Lambert equation relates 
the flight time A t = t ,  - t l  with the parameters ri, rz, Ae, and a.  
this relation, we  proceed from expression (5.23), which gives 

To find 

(8.11) 

where ui and u2 are  the areas  described by the radius-vector as  the orbiting 
body moves from the perigee ll to the points Di and Dz(the sectors nOD, and 
IlOD, in Figure 8.5), and F = ~ ( u ~ - - u I )  is twice the area of the sector OD1& 
(described in the direction of motion around the center 0) .  

FIGURE 8.5. Elliptical sectors 
of the f i a t  and second kind. 

The problem thus reduces to the determination of F. Let us first 
calculate the a rea  of an elliptical sector. From (5.25) and (5.26) we have 

F=2(u2- UI) =ab[&- EI - e(sin Ez- sin &)I, (8.12) 

where El and E2 are  the eccentric anomalies at the points D, and Dz. 

El and Erare functions of e and o, which must not enter the final expression. 
We therefore write 

These formulas a re  inadequate for the solution of our problem, since 

F= ab (&-E, - 2e sin- cos-) = 2ab ( g -  sing cos h), (8.13) 
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where 

g=&$L, 

cos h = e  cosz (0 < h < n). 
Let 

Then 

(8.14) 

(8.15) 

(8.15') 

and equality (8.13) is written a s  

F=ab[e - sin e - (6 - sin &)I. (8.16) 

We now express the angles e and 6 in terms of ri=ODi,  rl=OD2, s=DiDz,  
and a (see Figure 8.5), which are  independent of e ,  o. From (5.30) wehave 

r t = a ( l  - ecosEi ) ,  rz=a( l  - e c o s & ) .  (8.17) 

Hence, applying (8.14), 

ri + rz= 2a ( 1  - cos g cos h) . (8 .18)  

On the other hand, from Figure 8.5 we see that 

(8.19) A 6  s4 = r: + ri - 2r,rl COS Ah6 = (rl + r$ - 4rlr2 cosa . 

Note that relations (5.31) between the trigonometric functions of the true 
anomaly 6 and the eccentric anomaly E can be written in the form 

Now, seeing that A6=e62-&(here 6, and (fo a re  the true anomalies at 
the points D, and Dz. respectively) and also applying (8.14), we write 

%2 cos $ = VT;;;;E (cos+cos%+ 6 sin+ 6 6  sin +) = 
E E =a (1 -e )  cos -+cos ++a(l + e )  sin -+ sin + = 

- -a  cos '2; -ae cos -=a E2+4 (cosg- cos h). (8.21) 
2 

Substituting (8.18) and (8.21) in the right-'hand side of (8.19), we have 

s=2a s i n g  sin h. (8.22) 
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From (8.18) and 8.22) we find 

ri+rz+s=2a[l -cos (g+h)] ,  
ri +rz  - s = 241 - cos (g - h)]. 

Heme, applying (8.15), we  find 

s i n 2 e -  rl+r2-l-S,  6 r 1 f r 2 - S .  (8.23) 
2 -  4a 2 - 4a 

If we a re  to calculate the parameter F from (8.16), (8.19), and (8.23), 
b 

6 8 
we should first establish in what quadrants the angles 

To this end, it suffices to find the signs of sin $, cos;, sin 2, c o s y .  

and are  located. 

Take the case 

O<Ai3<2n. 

From the geometrical definition of eccentric anomaly (see Figure 5.3) we 
have 

O<E, - Ei<2n. 

Therefore, making use of (8.14), we write 

o<g<n. 

Now, from (8.14) we have 

O<h<n. 

Hence, applying (8.15), 

O < E - - -  - g % h  <n, sin$>o.  

Note that with the aid of (8.15'), expression (8.21) may be written a s  

G c o s q = 2 a s i n + s i n  8 2 ,  

6 A 6  has the same sign a s  cos whence it follows that sin In other words, 

b sinf>O for O < A @ ( n  

sin:<O for 2n>A6>n.  

6 To find the sign of cos; and cos 1, we first consider an infinitesimally 

narrow sector, where 2 g = E z - E i = 0  and e = 6 = h .  In this sector 

O < y - = -  ~ b h  
2 2 G '  

b cos + > 0, cos > 0. 
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6 The quantities cos $ and cos 

expansion of the sector unless they pass through 0. But if cos 

clearly sin2 $ = I .  From (8.23) we see that in this case 

cannot reverse their sign upon gradual 

=O, then 

rl + rz +s = 4a, (8.24) 

which corresponds to the condition (8.4) of the previous section, according 
to which the second focus 0' is on the line DD'. 

Inwhatfollows, an e l l i p t i c a l  s e c t o r  of  t h e  f i r s t  k i n d  is a 
sector ODiPD2, where the second focus 0' lies outside the segment D i p 4  
(see Figure 8.5), Le . ,  a sector corresponding to an elliptical orbit of the 
first kind, a s  defined in Sec. 8.2. This sector can obviously be obtained 
from an infinitesimally narrow sector by continuous expansion, while the 
second focus O'never crosses  the chord DiDz. Hence it follows that 

cos; > 0. 

For the angle 6 we always have 

6 c o s y  > 0, 
8 since the condition cos = O  leads to the impossible equalities 

r l  +- ra - s = 4a, r; + r; = - s, 

where r; and r; are  the distances of the points Di and D2 from the second 
focus O', as  defined by (8.2). 

It follows from the preceding that for an elliptical sector of the first 

kind, with O<A@<Zn, the angle $ is always in the first quadrant. 

$ is in the f i r s t  quadrant for 0<A.6<n and in the fourth quandrant for 
n<A@<Zn. Expression (8.16) is thus written in the form 

The angle 

F=at&o-sineoT (&-sin &)I, (8.25) 

where 

The sign - corresponds to O<Ab<n, and the sign + to n<A6<2n. 
from the second relation in (8.23) that 6-sin 6=0 for A6=n (since r i + r z = s ) .  
In this case, either sign may be assumed in (8.25). 

t h e  s e c o n d  k i n d ,  i. e., a sector where the second focus 0' is inside 
the corresponding elliptical segment (this is consistent with the previous 
definition of elliptical orbit of the second kind). 

We see 

We now proceed to determine the a r e a o f  an e l l i p t i c a l  s e c t o r  of  

Twice the area of this 
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sector (the sector DiQDzO in Figure 8.5) can be obtained from the expression 

F(A.6) z F ( 2 n )  - F(2n - Ae), 

where F(2n) is twice the a rea  of the ellipse (i. e., of a sector with A 6 = 2 n ) ,  
and F(2n -A.6) is twice the a rea  of the complementary sector. 
Figure 8.5 we see  that the complementary sector is a sector of the first kind. 

From 

F(2n) is obtained from 

F(2n) = 2 n ~ b ,  (8.27) 

where nab is the a rea  of the ellipse. 
for an elliptical sector of the second kind, with O<A.6<2n, 

Hence, applying (8.25), we see that 

F =  ab[2n - (so - sin eo) T ( tio - sin do)]. 

The parameters eo and 1 3 ~  are  obtained from (8.26), and the sign in the 

(8.28) 

right-hand side of (8.28) is chosen from the same considerations a s  the 
sign in (8.25). 

For  a l i m i t i n g  e l l i p t i c a l  s e c t o r  (where the second focus l ies  
on the line DiDz; this corresponds to the case of a limiting elliptical orbit) 
condition (8.24) is satisfied. 
and the a rea  formulas (8.25) and (8.28) take the form 

From (8.26) we see that 8o=n in this case, 

From (8.27) we see that for 

the expression 

F(2nn) =ennab, ( 8 . 3 0 )  

where n is the number of complete revolutions contained in the angle A+, 
must be added to (8.25), (8.27), and (8.29). 
(whether of the first o r  second kind o r  limiting) and the sign in the right- 
hand sides of (8.25), (8:28), and (8.29) a re  determined in this case by the 
parameter 

A+'=A6 - 2nn. (8.31) 

The nature of the sector 

8.4. AJZEA OF HYPERBOLIC AND PARABOLIC SECTORS 

Since hyperbolic and parabolic trajectories a r e  open, we always have 

0<A6<2n. (8.32) 

Moreover, it is only sectors of the first kind that need be considered 
(for a parabola no sectors of the second kind are  possible, since the second 
focus is at infinity, while for  a hyperbola they correspond to the second 
branch, which is of no relevance for the solution of our problem). 
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In determining the area of a hyperbolic sector ODiDz (a<O), we shall 
proceed from relations (6.4), (6.37), and (8.11), which give 

F = ab [e(sh H,- sh Hl)-  (H,  -HI)! = 

=up [2e sh + H 2 - H  ch 7 - ( H Z  H , + H I  - H I ) ] ,  

where Hi and Hz a re  the values of the variable Hat the points Di and D,. Let 

(8.33) 

whence 

Then, making use of the identity 

where E and q a r e  arbitrary quantities, we have 

F =2@(shgchh-g)= 
=ab Ish e - e -(sh b -6)L (8.34) 

To find the angles e and 6 entering this expression, we make use of (6.33), 
which gives (see Figure 8.3 a) 

OD, =r,  = a(ech H1 - I), 
OD, = r, = u(ech H z -  1). 

Adding these expressions and applying the identity 

ch b +ch q = 2 ch ch 9 
with relations (8.33), we find 

ri + r2= 2a(ch g ch h - 1). 

(8.35) 

(8.36) 

We now return to expressions (8.19) for  the distance s between the points 
Di and Dzand proceed to determine the angle 

66=.B-2-8, 

in the right-hand side of these expressions (&and &are  the true anomalies 
a t  the points Di and Dz).  Applying relations (6.34) and the identities 
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we find 

fi sin ;== v m  sh $, 
C c o s  f =  v m c h q ,  

=cos T== At? 6 (cos +cos 6 6  ++ 
=a(e - 1)ch $ ch %+a@+ 1)sh -&ch$. H 

Now, making use of relations (8.33') and the identities 

we find 

c 2 c o s F  =a(ch h-ch g). 

Substituting (8.37) and (8.36) in (8.19), we find 

s = 2a s h  g sh 12. 

(8.37) 

(8.38) 

F rom (8.36) and (8.38) it follows that 

rl +r2+ s = 2a [ch (g+ h) - 11, 
r,+ r, - s = 2a Ich (g - hi - 11. 

whence, applying (8.33), we find 

The parameters e and 6 can be determined from these formulas only 
if their sign is known. 
increases with flight time (see Sec. 6.3), we find 

From (8.33), seeingthat thevariable H monotonically 

g" H 2 - H I  2 > 0, f l >  0, e >o. (8.40) 

On the other hand, making use of relations (8.33) and the identity 

ch f -ch q - 2 s h w  sh 9, 
we write for (8.37) 

Ai? E &  -2cos '2- ==a sh- 2 shT. 

Hence, making use of inequalities (8.40), we find 

&>O for  A6<n, 
8 4 0  fo r  A6>n. 
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Comparing relations (8.34), (8.39), and (8.40), we obtain the following 
final expression for twice the a rea  of a hyperbolic sector: 

F=af l [ sh~ i -E~  (sh81-6$)1, (8.41) 

where 

Here - corresponds to A6<n and + to A6>n (for A..B=n, 6i=O). 
Note that (8.14) can also be derived from (8.25) and (8.26) on substitution 

where i=m. 
signs of E and 6. 

This approach, however, leaves open the question of the 

To find the area of a parabolic sector ( a = + w ) ,  we expand (8.25) and 
1 (8.26) in powers of ;. Let 

Then from (8.2 6) we have 

1 1  1 1 3  1 1 . 3 . 5  %=arcsinm=m + - - m 3 + - - m s + ~ ~ m 7 +  ..., 2 3 2  5 2 .4  

5 =m v m  = m - 1 1 1 3 3  - 1 1 1 . 1 . 3  
m5 - 2mm7 -.  . . , 2 2 2 . 4  whence 

...). 
Analogous expansion can be obtained for 6 0  - sin 60. Inserring these 

expansions in (8.25), (8.28) and making use of (5.3) and (5.7), we obtain 
for elliptical sectors of the first kind 

F = fi{ $; [(TI + ~ ~ f s ) " l ' r ( r ~  + r2 - s)"] + 
+---- I l l 1  

5 2a 2 a [(TI + ~ 2  + s)%S(ri +r2 - s)'~] + 
(8.42) 1 1 1 . 3  1 

+ T F p F  [ ( r l + T * + f ~ ' ~ q ( ~ l + T 2 - s ) ' l t l  + - ' .): 
for elliptical sectors of the second kind 

The first of these formulas can be shown to apply, not only for  elliptical, 
but also for hyperbolic sectors.  It must be borne in mind, however, that 
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the ser ies  converge only if  /-<I. From (8.3) it follows that this 

condition holds t rue for elliptical orbits (with the exception of limiting 
orbits, with m =  1). For hyperbolic orbits, however, this may not be true, 
and (8.42) is then meaningless. 
the formula for twice the a rea  of a parabolic sector: 

For a -+ 00, expression (8.42) reduces to 

F = 

where - corresponds to Aft<n and + to A t b n .  

[(rl + r, + s f 6 ~  (rl  +rz - s,”/.l, (8.44) 

8.5. EULER-LAMBERT EQUATION 

Substituting (8.25), (8.28), (8.29), (8.41), and (8.44) in (8.11) and making 

for hyperbolic orbits (a<O) 
use of (5.3), (5.7), (6.4), and (8.30), we find: 

where 

for  parabolic orbits (a= +w) 

for elliptical orbits of the first kind (a > f l - e ~ + s )  

a% 

f i  At=-[2nn+e,-sin e,*($- sin&,)], 

where 

for limiting elliptical orbits a= ( r1+7+s) 

(8.45) 

(8.45’) 

(8.46) 

(8.47) 

(8.47’) 

(8.48) 
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where 

(8.48') 

+7+7 for elliptical orbits of the second kind (u> 

a"' 

fi At=- [2n(n+ l)-(e,-sin~g)+(6,,- sin$)]. (8.49) 

In (8.45'), (8.46), (8.47') and (8.48'), s is determined from (8.19) (always 
sBO), n is the number of times 2n goes into A.B(for hyperbolic and parabolic 
orbits n= 0), the sign - corresponds to A.B-2nn<n, the sign + to A6-2nn>n. 

The preceding relations constitute the so-called f i l e r  - Lambert 
equations for the various kinds of orbits. Numerical solution of the Euler- 
Lambert equation (i. e., determination of a from ri, 12, At+, and A t )  can be 
carr ied out without difficulty, if  the type of the orbit and the number of 
ailowed solutions a re  known. Any of the conventional techniques for the 
solution of transcendental equations is adequate. As we have shown in 
Sec. 8.2, all the elements can be unambiguously determined once the type 
of the orbit and the parameter a a re  known. 

Our problem thus reduces to the determination of the type of the orbit 
and the number of solutions of the Euler-Lambert equation for various 
values of the parameters rir r2, A 6 ,  and At. 
therefore proceed with an investigation of the Euler -Lambert equation. 

In the following sections we 

8.6. TYPE OF ORBIT FOR A6<2n 

If the body does not complete at least one revolution around the primary 
(A6<2n), any of the foregoing orbits may apply. 
type of the orbit in each particular case, we  introduce a new variable 

To establish the actual 

1 1 
x=-;;.=--.;;-* (8.50) 

As this variable monotonically increases, we gradually progress from 
hyperbolic to parabolic, and eventually to elliptical orbits. Hyperbola 
corresponds to x<O, parabola to x=O, and ellipse to x>O. 

Let us consider the dependence At(%) for  various types of orbits. 
From (8.45) and from the known properties of hyperbolic functions, 

we see that for %--eo, 
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Let us establish the sign of the derivative 

*k2 fi{ 3 Ish 81- ‘4 3(Sh61--b1)]+ 
d 1 d  

d x  nz da -(At) = - -(At) - 
de db + 2a [(ch e, - l ) + + ( c h b ,  - 1) d]) 

in hyperbolic orbit. Differentiating expressions (8.45’) for el and 81, we find 

Similarly, 
d6, - 1 8 
da 
_ _ - _  a th$. 

(8.51) 

X @(IC) = 3 (sh X -  x ) -  2(chx - 1) th  7 .  
Clearly, 

O(0) =o. 
Also 

c h x - 1  _- 2 -33chx- 1)- 

We see that @ ( x )  monotonically increases with x ,  and @ ( x )  kO for x b O .  
Hence, applying (8.51) and seeing that 

we obtain in our  case 

d 
dn - (A t )  > 0. 

In hyperbolic orbits, the time At  monotonically increases a s  x r i ses  
from --oo to 0. For x=- -M we have A t =  0 (flight with “infinite” velocity), 
and for x =  0 we have the flight time Atpar defined by expression (8.46) for 
parabolic orbit. 

The function At(%) for  elliptical orbits can be analyzed making use of 
expansions (8.42) and (8.43), which on substitution in (8.11) (in conjunction 
with (8.27)) give the following expressions: 

for elliptical orbits of the first  kind 
~ t = - 1 _ (  2nnn-3/2+6 1 [ ( r ~ + f z + s ~ ’ ~ ~ ( r l + ~ ~ - s ~ ’ ~ l  + 

fi 
+% [(.I + rz+ s)”T(r1+ r, - s)“] +$$ [(rl + rz+ s)”qz(rl+ rz - s)%] + . . .): (8 3 2 )  
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for  elliptical orbits of the second kind 

A t = -  2n(n+ l)ra’*+ fi * (  
+ + [- (rl+ r, + SPT (rl + r, - SPI + 
+ + [- (r1 + rz + S P  T ( f l+  r, - S P I  + 

+ $& [- (rl + r, + spq(rl + r, - s1”q + . . . ] . 
In our  case, the number of complete revolutions 

(8.53) 

Moreover, 

rl + rz+ s>ri + rz - s, 

and for elliptical orbits the parameter x varies between the limits 

As x increases, the time At monotonically increases for elliptical orbits 
of the first kind and decreases for orbits of the second kind. 

Fo r  x--‘O, we have Af-+Afpar in orbits of the f i rs t  kind, and At-tm in 
4 orbits of the second kind. 

elliptical orbits of either kind, where AtIi,is defined by (8.48). 

For  x + x l i ~ r r , + r 2 + s ,  w e  have A t - t A f l i m  in 

1 FIGURE 8 6 Flight rime At  between two glven points vs. % = -. 
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We see that for Ai?<2n, the function A t ( x )  follows the curve MJoBoN0 of 

Figure 8.6, where the abscissa gives a dimensionless number x = 2 = r 1 x ,  

which is proportional to x ,  and the ordinate the dimensionless number 

y=;,Af, fi which is proportional to At (the curve plotted in Figure 8.6 
1 

corresponds to the case r=  1.5 ill Ai?=45"). 

point dp to parabolic orbits, the interval &Bo to elliptical orbits of the 
first kind, the point BO to limiting elliptical orbits, and the interval 
BONO to elliptical orbits of the second kind. As  the points Mo and Norecede 
to infinity, the curve AoMo asymptotically approaches the abscissa axis 
( A t  = 0), and the curve BONO moves to the ordinate axis ( x  = 0). 

We see from the curve M,&BoNo that for AI?<23s, to each Af there always 
corresponds a single x .  
(8.50), the Euler-Lambert equation (and therefore our problem as  a whole) 
is uniquely solvable in this case. 
to  calculate the parameters Atpar and Afli,from (8.46) and (8.48). 

On'this curve, the interval M d o  corresponds to hyperbolic orbits, the 

Since x and a a r e  unambiguously related by 

To find the type of the orbit, it suffices 

For hyperbolic orbit 

for parabolic orbit 

Af = Atpar ; 

for elliptical orbit of the first  kind 

At li,>At>Afpar 1 

for  limiting elliptical orbit 

At = Atli,; 

for elliptical orbit of the second kind 

8.7. TYPE OF ORBIT FOR Ai?>2n: 

If the body completes several revolutions around the primary (A6>2n: ,  
n b l), the orbit is of necessity elliptic. 
and the number of solutions of the Euler-Lambert equation, we procefd 
with an analysis of the function At(%) for these orbits. 

To establish the type of the orbit 

Differentiating (8.52) we see that for elliptical orbits of the first  kind 
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where 

Fz(x)=+(  -!- I(.,+ f* + S P  T ( f l+  r z  - sPl+ P @  
+ ~ ~ ( f 1 + f z + . * ~ ' ~ ~ ( r 1 + ~ * - s ~ ' ~ ] +  ...). 

We see from these expressions that as  x increases between the limits (8.54), 

the function F t ( x )  monotonically decreases f rom 00 to Fl ( x l i m ) ~  xti;;l"l, and 

the function & ( x )  increases from Fz(0) =- 
80 fi 

The derivative 

From (8.47) and (8.50) we have 

3nn 

1Vl-t r z  + S P  T (r1+ r z  - $9. 1 

d d ( A t )  monotonically increases from x ( A f )  =--03 for x =  0. 

&(Ai)=$ c((1 -cose,,)tg+T 

6 3  T(1 -cos 6,) tg i -T [znn + eo - sineoT(bo - sin bo)]). 

From (8.47), (8.50), and (8.54) we see that for x+xlim,eO-*n and &<n. 
Hence, 

d x(At)-+m for x-+%lirn. 

d We see that for elliptical orbits of the first kind, the derivative ~ ( b t )  

monotonically increases f rom -00 to + 00 in the entire interval (8.54), 
passing once through zero. Hence it follows that for  elliptical orbits 
of the first kind At(%)  monotonically decreases with increasing x from 
00 to a certain minimum A t ,  and then r i ses  to Aflim, as  defined by (8.48). 

The function Ai(%) €or elliptical orbits of the second kind, as  we see 
from (8.53), monotonically decreases with increasing x from 00 to At l im.  
Hence, for n > l ,  the function At(%) is represented in Figure 8.6 by the 
curves M n A n B n N n  (n= 1, 2, 3 , .  . .). In these curves, the intervals M n B n  
correspond to elliptical orbits of the first  kind, the points B,  to limiting 
elliptical orbits, and the intervals BnNn to elliptical orbits of the second 
kind. 
time AtmAfn .  
and BnNn asymptotically approach the ordinate axis ( x =  0). 

The points Ancorrespond to orbits of the first kind with the minimum 
A s  the points Mnand Nnrecede to infinity, the curves BnMn 

From the curves MnAnB,Nn we see  that for 

the problem is unsolvable. 
For 

ht = Atn 

the problem has one solution (in the region of orbits of the first kind); 
for  

Aflim > At>& 
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there a re  two solutions in the region of orbits of the first kind; 
for 

A t  =Atli, 

there a re  again two solutions, one corresponding to an orbit of the first  
kind, the other to a limiting orbit. 

Finally, for 

At>Afiim 

there a re  two solutions corresponding to orbits of the first  and the second 
kind. 

the equation 
To find the numerical value of the minimum time At=Af, ,  we must solve 

d 
dn - ( A t )  = 0. (8.54') 

Differentiating (8.47), we see that the solution of equation (8.54') is 
equivalent to the solution of the equation 

3B.n +eo - sin %7(b0 - sin bo)]- 

-2 [(l - cos Eo) tg +p(1 -cos bo) tg?] = 0. (8.55) 

Solving this equation by any of the common approximate techniques, 

It can be shown that for  fixed points Dt and Dz (i. e., for constant values 
we fmd the corresponding a=a, and substitution in (8.47) gives At,,. 

of the parameters r i ,  r 2 ,  and s) ,  the time At, increases with increasing n .  
Hence it follows that if with given positions of the points Di and D2 and 
with a given time At, the problem is solvable for some n=na ,  it  is also 
solvable for any n<no. 

In the preceding analysis we invariably assumed that the number of 
complete revolutions around the primary was known. 
to  do without this sssumption, i. e., we shall seek the possible paths 
between the points Di and Dtwith a constant flight time At.  
motion around the gravitational center is known. 

k signs is specified. 
to an intersection of the horizontal line 

We shall now try 

The sense of 

In other words, the n in expression (8.1) is arbitrary, but one of the 
Graphically, each solution of this problem corresponds 

(the line EF) with one of the curves M,A,B,N,(Figure 8 . 6 ) .  Let N be the 
largest  of the integers n for which the problem is solvable, i. e . ,  let  N 
be defined from the condition 

b i ~  4 At, AtN+i>Af, 

where AfN is the minimum allowed value of A t  for 

n = N (Ata= 0). 
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Having thus found the number N, we can easily find the number of 
soiutions k .  From (8.6) we have 

2N+l  for A t N < A t ,  
2N for  &,=At. k = (  

8 . 8 .  PARTICULAR CASES OF ORBIT DETERMINATION 

We have invariably assumed in the preceding that the points D,, Di,' and 
the gravitational center 0 were not colinear. If these points a r e  on one 
line, the solutions of our problem acquire the following peculiar features. 

(1) Besides the curvilinear motion defined by (4.19), there is also a 
possibility of vertical motion along the line DiDzO. 

( 2 )  In curvilinear motion, the orientation of the orbital plane is indeter- 
minate. 

In general, there a re  three different colinear dispositions of the points 
Dl, D2, and 0.  

A. 
B. 
C. 
The case when one of the points D1 and D 2 ( o r  both) coincides with the 

gravitational center 0 is of no practical value. 
When the points Dl and Dz are  on the two sides of the primary, only 

curvilinear orbits a r e  possible. 
trajectories a r e  invariably confined to one side of the gravitational center 
(see Secs. 7.5-7.7). To determine the curvilinear orbit, we should first 
decide on the orientation of the orbital plane through the line DIODz; the 
Euler -Lambert equations (8.45) -(8.49) a r e  then applied, putting 

The orbit may lie in any plane through the straight line DiDZO. , 

The points Di and Dz a re  on the two sides of 0. 
The points DI and D2 a r e  on one side of 0, but they do not coincide. 
The points D, and D, coincide. 

Vertical motion is ruled out since vertical 

I Aft = n (2n + I), s = rl + r,. 
TI + r2+ s = 2 (r,+ rz), r, +r* - s = 0, 

(8.56) 

6, = b, = 0. I 
Al l  the alternative solutions of the Euler-Lambert equation listed in 

Secs. 8.6 and 8.7 apply in this case. 
of these alternatives there correspond, not one, but two trajectories in 
any orbital plane, differing in the sense of motion around the gravitational 
center (the trajectories UIPIDz and DlP2Dz in Figure 8.7). 
clearly obtains from the orbit DIPiDz by rotating the orbital plane through 1~ 
around the line DlD2. 
the position of the orbital plane X, we define its "positive side" as  the side 
where the orbital motion is clockwise. 
plane Z can be defined by the dihedral angle y between the orbital plane 
and a given reference plane 20. This angle increases as the orbital plane 
rotates in the positive direction. The trajectories DiPiD2 and DiPDZ then 
correspond to different orientations of the plane 2 ,  defined by the angles 
yl and yz=yi+n. 

However, for A.B.=n(2n+1), to each 

The orbit Dip& 

The ambiguity can therefore be eliminated i f ,  given 

In this case, the orientation of the 
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W e  see that when the points Di and Dz a re  on the line DIODz, on the two 
sides of 0, all the different cases of Secs. 8.6 and 8.7 apply. Each solution 
of the Euler -Lambert equation corresponds to a one-parametric family 

FIGURE 8.7. 
D, and D,colinear with the center of attraction 0. 

Motion between two given poinrs 

of orbits, with different orientations of the orbital plane. The parameter 
specifying the orientation of the orbital plane is the angle y ,  which varies 
between the limits 

0 4 y< 2n. 

If two distinct points Dl and Dz a re  on one side of the center of attraction 

Hence, applying (4.19), we have rl=rz ,  which is at variance with 
0, no curvilinear transfer trajectory is possible. Indeed, in this case 
A$=2nn. 
the assumption that the points Di and Dz a re  distinct. 

Since no circumnavigation of the gravitational center is possible with 
vertical orbits (see Secs. 7.6 and 7.7), we must take 

A vertical orbit is permitted. Its direction is along the line 0DjDz. 

A@ = 0. (8.57) 

To find the parameter a ,  we make use of Euler-Lambert equations 
(8.45) -( 8.49), applying condition (8.57) and also the condition 

where rmax and rmh are  respectively the larger  and the smaller  of the two 
distances r,and rz .  

Hence 

r1+ rz+ sx 2rma,, rl + rz - s = 2rmt,,. (8.58) 

As we have observed in Sec. 7.5, vertical elliptical orbit is the limiting 
The second focus case of a curvilinear trajectory with a= const and e 4  1. 

coincides with the vertex A of the vertical orbit (see Figure 7.2). Hence, 
elliptical orbits of the first kind degenerate into vertical trajectories, 
with the body moving from point Di to point Dzwithout passing through the 
vertex A. Orbits of the second kind degenerate into trajectories DIADz,  
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where the body passes through the vertex. 
follows that for limiting vertical elliptical orbits 

From (8.24) and (8.25) i t  

2a = rmax, (8.59) 

which corresponds to a case with one of the points ( D i o r  D z )  at the vertex. 

write Euler -Lambert equations in the following form: 
Substituting (8.57) -(8.59) in the right-hand sides of (8.45) -(8.49), we 

for vertical hyperbolic orbits (a<O) 

At=-[she1-ee,-((sh6,-a6,)], fi 

for  vertical parabolic orbits (a=oo) 

1 ~t = - ~ ( 2 f ~ ~ ~ ~ ' ~ - ( ~ ~ r n , " ~ ' ~ ] ;  
s f i  

for  vertical elliptical orbits of the first kind (u > *) 
At = - [e, - sin c0 - (&, - sin bo)], fi 

for limiting vertical elliptical orbits u = i rmax) 

(8.60) 

(8.61) 

(8.62) 

(8.63) 

for vertical elliptical orbits of the second kind (u > *) 
J 2  

fi At  = - [2x - (e, - sin Q) - (eo - sin 6,)]. (8.64) 

All the conclusions obtained in Sec. 8.6 for the general Euler-Lambert 
equation with A*<Pnremain in force. 
a r e  distinct, the Euler -Lambert equation is always uniquely solvable. 
To find the type of the vertical orbit, we should calculate from (8.61) and 
(8.63) the flight time Atparin parabolic orbit and Atli, in limiting elliptical 
orbit. The type of the orbit is then determined a s  at the end of Sec. 8.6. 

by numerically solving the Euler-Lambert equation, we can find the 
second element T of the vertical orbit from the known time of passage 
through one of the points D, or  Dz. 

It follows that if the points D,and DZ 

Having established the type of the orbit and calculated the parameter u 

The relations in Secs. 7.6 and 7.7 a r e  



adequate for this purpose. To sum up, if two distinct points Di and D2 lie 
on the line OD1D2, on one side of the gravitational center 0, the problem 
has a unique solution, which corresponds to a certain vertical trajectory. 

If the points DI and D,coincide, different cases a re  possible with At = 0 
and At+O. 
through a given point DI.  The solution of this problem is clearly a three- 
parametric family of possible orbits (the parameters specifying each 
orbit of this family are ,  say, the velocity components at the point Dl). 

The case A t =  0 is the trivial problem of orbit determination 

In the case 

AiS.0, Ab=2nn (n -0 ,  I ,  2, ,..). ri=rz, (8.65) 

on the other hand, both vertical and curvilinear orbits a re  possible, 

consider the case n= At+==O, 
As we have previously observed, for vertical trajectories we need only 

Then 

r i z r z ,  s=O, r t + r Z + s = ~ i - + r 2 - ~ = 2 r i ,  ~o=bo,  ~ 1 = 8 1 .  

Hyperbolic vertical orbits, parabolic vertical orbits, elliptical vertical 
orbits of the first kind, and limiting elliptical vertical orbits a r e  all 
impossible in this case, since from (8.60)-(8.64) we have At= 0. 

and the Euler - Lambert equation (8.64) takes the form 
We are  therefore left with elliptical vertical orbits of the second kind, 

(8.66) 

From (8.66) we see  that At monotonically increases with a.  As a varies 

between the limits $-<a<co, A t  varies in the interval O<At<oo.  

Lambert equation is therefore uniquely solvable in our case. 
defines the orbit. 

Here 

The Euler- 

This solution 

Aside from the vertical trajectory, there a re  also curvilinear orbits. 

n> 1 ,  A f h Z n n .  

These a re  ellipses with an orbital period 

Hence, making use of (5.36), we obtain the semimajor axis 

(8.67) 

(8.68) 

These orbits a r e  possible only if 

(8.69) 
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This condition may be written as 

(8.70) 

For  At=Af,, the closed elliptical orbit degenerates into a vertical trajectory. 
The solution becomes unfeasible, since it presupposes circumnavigation of 
the gravitational center. 
attained i f  the velocity at the given point i s  

From (5.15) it follows that the desired orbit is 

The direction of the velocity vi remains indeterminate. Hence it follows 
that if condition (8.70) is satisfied, the solution of our problem is a two- 
parametric family of elliptical orbits. The parameters defining each 
orbit of this family are,  say, the two angles specifying the direction of 
the velocity vector at the point Di. If condition (8.70) is not satisfied, 
the problem is unsolvable. 

8.9. 
DETERMINATION FOR TWO FIXED POINTS 

LIST OF THE DIFFERENT CASES OF ORBIT 

We a r e  now in a position to list all the different cases in the determination 
of orbits through two given points Dt and D2, when the flight time At between 
the points and the circumnavigation angle A6 a re  known. This list is given 
in Table 8.2, which shows how the number and the type of solutions depend 
on the relative disposition of the points 0, Di, D2, and also on the particular 
values of At and A@. 
passage through the gravitational center 0. 

of orbit determination is lowered because of the significant increase in 
the contribution from e r r o r s  of measurement and calculation, 
from Table 8.2 that this loss of accuracy occurs in the following cases: 

By unfeasible solutions we mean those which require 

In conclusion we should note that in many-valued cases, the accuracy 

It follows 

(i) A6+0, At-+@ 
(ii) A 8 4 n n  (n=1, 2, 3, ...), A t + a  

(iii) h6 > 2n, A t  +At,,. 

The case of large A+, close to A@=m+ $(n=O, 1, 2 , .  . .), is optimal 

a s  regards the solution of the problem. 

8.10. CALCULATION O F  THE ELEMENTS p AND w 

Once the type of the orbit has been determined and the parameter a 
calculated, the problem reduces to the determination of the elements p 
and O (see Sec. 8.1). We have shown in Sec. 8.2 that this problem is 
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TABLE 8.2. - 
No. 

- 
1 

2 

3 

4 

5 

6 

I 

8 

9 

10 

11-21 

21-2. 

26 

21 

28 

29 

30 

31 

- 

Disposition of thc 
points 0, D,, and L 

ot colinear 

olinear: D1 and C 
n the two sides of( 

olinear: D, and L 
n one side of 0 

?%and DL coincide 

Ab At 

O!t,i+-At>Af, 

Af = A t l i m  

At  > Atlim 

Solution 

One 

None 

One 

Two 

Orbit 

Hyperbolic 

Parabolic 

Elliptical first kind 

Limiting elliptical 

Elliptical second kind 

Elliptical first kind 

Elliptlcal first kind 
and limiting elliptical 

Elliptical first and 
second kind 

A l l  the solutions from 1 through 10 are possible, depending on the particular 
values of A 8  and A t .  Each of the solutions 1 through 10 corresponds to a 
one-parametric family of orbits 

Ad..- 2nn 
(ne1 .2 .3 .  ...) 

ill the solutions from 1 through 5 are possible, depending on 
he particular values of At.  Each of these solutions uniquely 
lefines a verth 

irbitrary 

At= 0 

A t  > 0 

At C Atn 

At = Af,, 

At >Af ,  

orbit 

Impossible or 
unfeasible 

Three-parametric 
family 

One 

None 

Unfeasible 

Two-parametric 
family 

Vertical elliprical 

Vertical elliptical second 
kind - 

Limiting vertical 
elliptical 

Elliptical 
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always uniquely solvable, and that the solution can be obtained by geometrical 
construction. 
these elements. 

and subtracting, we obtain 

In the present section we derive analytical expressions for 

In the case of elliptical orbit, we proceed from relations (8.17). Adding 
r* 

E 2 - - E I =  

whence 

(8.73) i 2tTn+% 8, for elliptical orbits of the first  kind, 

n(2n + 1) 5 6,, for limiting elliptical orbits, 

2 n ( n + l ) - ~ + ~  for elliptical orbits of the second kind, 

EZ+EI - r ~ +  rl 1 ecos - -  2 (1 - T I  &--E, ’ 
cos - 2 

On the other hand, from (8.14) and (8.15) we have 

E1 - Et= E - 8 

(8.71) 

(8.72) 

Having calculated Ez - E ,  and e ,  we can find &+EI from (8.71), and then 
determine Ez and E ,  separately. Now, from (5.49) we have 

(8.75) 
o= u1 - = u, -ev 

6 The angles 

The las t  equality in (8.75) can be applied for  verification. 

are in the same quadrants a s  the corresponding angles *, 
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The elements of hyperbolic orbit a r e  calculated in the same way. F rom 
(8.35) we have 

r?S.rl =ech ____ H Z ; H I  ch HL--Ht 1, 2a 2 

where 

(8.76) 

The differeixe H z -  HI entering the right-hand side of these expressions is 
determined from (8.33), (8.41): 

H e -  H , = E ~ T  61. (8.78) 

The parameters FI and 6 ,  a re  calculated from (8.41); the sign - corresponds 
to A 6 4 , ~ n ,  the sign + to A.d>/n. 

Having found Hz- Hi and e, we can determine p and H 2 + H f  from (6.4) 
and (8.76), anc‘ then Hzand H i  separately. Now, from (6.41) we have 

(8.79) 
w= 111 - 8 ,  = u, -8p J 

The angles 9 in these formulas a r e  in the first o r  the fourth quadrant 

The elements of parabolic orbit (a=ao) a r e  determined from (7.1), 
(since for hyperbolic orbit --n<it<n). 

which gives 

r, = - P ++, , rz=--J---- 8 ’  
2coaZ 2 cos2 -$ 

whence 

From these equalities, after some manipulations, we find 

s in+= c t g q  G- + a 
sin 

From (8.8 0) and (8.8 1) we have 
n 

(8.80) 

(8.81) 

(8.82) 

The angle 6, is calculated from (8.80) and (8.81), and the argument o 
is determined from (8.79). 
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* *  

Chapter 9 

THE INFLUENCE OF VARIATIONS IN THE INITIAL 
CONDITIONS OF MOTION ON THE ELEMENTS OF 
ELLIPTICAL ORBIT 

9.1.  STATEMENT OF THE PROBLEM 

In Chapters 5-7 we derived expressions for the orbital elements in 
terms of the initial conditions of motion. In the solution of various applied 
problems, we often have to consider the influence of variations in the 
initial conditions on the orbital elements. 
this problem has been dealt with in Chapter 2 .  

elliptical orbits of artificial Earth satellites. 
perturbations of the elements (which do not alter the orientation of the 
orbital plane), and then proceed to analyze orbit-plane perturbations 
(assuming unperturbed motion in the orbital plane), 

The motion of a satellite in the orbital plane is determined by four 
initial conditions: two coordinates and two velocity components, The 
initial position of the satellite in polar coordinates can be defined by the 
distance ro from the center of attraction and the angular distance ug from 
some fixed direction (e.  g., the line joining the center of attraction with 
the ascending node Q) .  The initial velocity vector can be characterized 
by its magnitude uo and by the angle eo between its direction and the local 
horizon (Figure 9.1). 

F o r  nearly circular orbits, 

The present chapter investigates this question in application to the 
We first  consider in-plane 

FIGURE 9.1. Initial conditions of motion 
in polar coordinates. 

The time is reckoned from the passage of the satellite through the point 
of origin of i ts  orbit (i. e., its initial position). 
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Since any variation in the angle uo rotates the orbit around the center 
of attraction, we shall be concerned with the contribution from variations 
in ro, q, and Bo only. We shall particularly concentrate on the following 
in-orbit perturbations: 

perturbation of the semimajor axis a ,  
perturbation of the orbital period P ,  
perturbation of the eccentricity e ,  
perturbation of the angular distance eo from the pericenter 

perturbation of the pericenter and apocenter distances rp and ra . 
To this end, it suffices to conceive of the point 

to the point of origin, 

The results of this chapter a r e  also applicable in the analysis of various 
impulsive perturbations. 
of application of the impulsive perturbation a s  the point of origin, 
interpreting the impulsive perturbation a s  a corresponding variation 
in the initial velocity vector. 

9.2. VARIATIONS OF SEMIMAJOR AXIS 
AND ORBITAL PERIOD 

We have shown in Chapter 5 that the semimajor axis a of an elliptical 

Hence a relation between the variations Aa and AP of these 

AP 3 Aa 

orbit and the orbital period P a re  related by a single-valued expression 
(5.36). 
parameters: 

(9.1) -- 
P - T T .  

In virtue of this relation, the two variations should preferably be 

From (5.43) we see that a and P a re  functions of to and 
considered simultaneously. 

R o e -  4% 
c (9.2) 

while being independent of the angle 0,. 
(9.1), we see that a variation Ar, in the initial distance ro produces variations 
Aa and AP,  which are  defined by 

Differentiating (5.43) and applying 

2 Aa = a, Ar,, a, = - 
P * P r = , w *  

(2 - ko)z ' 
-=p,* AP 3 (9.3) 

For  a variation AVO in the initial velocity uo, we similarly have 

(9.4) 

In circular orbit h= 1, so  that a,=a.=2, P , = P , = 3 ,  which is fully 
consistent with the results of Chapter 2 for circular orbits. 
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For  elliptical orbits, these coefficients a r e  functions of 40. From (4.19), 
(4.23), (5.2), (5.15), and (5.30) we see that 

(9.5) 

Hence it follows that a s  the point of origin is displaced from pericenter 
to apocenter, the coefficient ko monotonically decreases (since the eccentric 
anomaly Eo monotonically increases from 0 to n). At the pericenter 
(Eo=@o=O) ko= 1 +e , at the point of intersection of the orbit with the 

semiminor axis (Eo=$) &=l, and at the apocenter (Eo=6pn) &,,=I -e .  

. 

Substituting (9.5) in (9.3) and (9.4), we find 

2 -  2 (1 f e cos e,)* 
(1 - e  cos E,,)* - ( l -ey ' a, = 

a,=2 l + e c o s E ,  = 2  1+Zecos6,+e2 
1 - e  cos E ,  1 - e p  

(9.6) 

(9.7) 

Analogous expressions a re  obtained for the coefficients P,and P ,  (the 

The coefficients a,. P,, e,, and P ,  monotonically decrease a s  the point 
At the pericenter, 

factor 3 is substituted for 2 in the right-hand sides). 

of origin is displaced from pericenter to apocenter. 

at the intersection point of the orbit with the semiminor axis, 

a,.=a,=2, P , = P , = 3 ,  

and at the apocenter, 

In elliptical orbits, the influence of initial (or  impulsive) perturbations 
on the semimajor axis a and the period P is thus greatest when the point 
of origin is at the pericenter, and least when it is at the apocenter. 
the eccentricity increases (the orbit becomes progressively more 
"elongated"), the difference between the maximum and the minimum 
perturbations becomes more pronounced. With the point of origin near 
the pericenter and e-1, the coefficients a,. a,, P,, and P,are infinitely 
large, which corresponds to a transition from elliptical to parabolic orbit 
(a, f'=oo). If an artificial Earth satellite traveling in a highly elongated 
elliptical orbit is subjected to comparatively small perturbations near the 
perigee point (these perturbations may be attributed to injection e r ro r s ,  
to Earth's flattening, to aerodynamic drag, etc.) ,  its orbit will be highly 
distorted. 
and they a re  therefore classified a s  secular, growing effects. 

As 

These disturbances may entail a change in the orbital period P ,  
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9.3. VARIATIONS OF ECCENTRICITY 

From (5.43) it follows that the eccentricity of an orbit is a function of 

To establish the dependence of e on ko.  we write the second equality 
ko and , i. e., in the final analysis, of ro, vo ,  and Bo. 

in (5.43) a s  

whence 

(9.9) (ko-Ua  - 
sin* tgz Bo 

The dependence of the eccentricity e on the coefficient ko is thus described 
by a hyperbola (Figure 9.2) whose axis points along the line k ~ =  1, and 
whose semiaxes are  equal to Isin&I(along the ordinate axis e )  and Itgeol 

ro4 FIGURE 9.2. Eccentricity e vs. ko=- for various Bo. 
P 

(along the abscissa axis k o ) .  
hyperbola between the following limits is meaningful: 

Fo r  elliptical orbits, only the part of the 

O , < k , , < 2 ,  O d e <  1 .  (9.10) 

For Bo= 0, the hyperbola degenerates into a polygonal line ABC defined by 
the equality 

e = I k o - l l ,  (9.11) 

and foi- Bo = k %, into the straight line P = 1. 

fill the entire triangle ABC in Figure 9.2.  The hyperbolas corresponding 
to &of opposite signs merge into a single line. All the hyperbolas meet 
at the points A and C of the triangle (e=1, ka=O; Z ) ,  and for kO= 1 they all 

For other values of the angle Bo, we obtain a family of hyperbolas which 
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pass through points with 

e =  Isin BO( ,  (9.12) 

v.4 which correspond to minimum eccentricity for each given Bo. 
To find a relation between small variations in ko and e ,  we calculate 

the derivative dn,. de From (9.8) we have 

_- de k , - I  
&, -e cos= e,. (9.13) 

de From this relation and from Figure 9.2 we see that for ko< 1, x < O ,  and 

for ka> 1, d ~ ,  > O .  

(kO=l, BO=O).  

constitutes an exceptional case. 
Let B and B' in Figure 9.1 be the points of the orbit on the minor axis, 

From the geometrical definition of the eccentric anomaly E (see Figure 5.3) 

we see that At 

the end points of these trajectories, l E l = g .  

find that ko> 1 for BnB'and ko< 1 for BAB'. 

de de For  ko= 1, ~ = 0  for all orbits, except circular 
de Circular orbit, for which in accordance with (9.11) d ~ , =  + I ,  

<$over  the path BnB' and \E \>$  over the path B'AB.  

Hence, applying (9.5), we 

At the points Band B', ko= 1. 
Comparison of these results shows for the path BnB' near the pericenter 

de 
dk, 

n of elliptical orbit, - > 0. Along this part of the orbit, any increase 

in ko(for constant 0,) entails an increase in the eccentricity e .  
decreases, the eccentricity first decreases, passes through the minimum 

Isin @,I, and then s tar ts  increasing. Along the path BAB', < 0, and 

As ko 

de 

As ko increases, 

At the points B and B', where the orbit meets the minor axis, $ = O .  

At these points, the first  variations of e corresponding to small variations 
of Izo are  zero. Higher-order variations, however, a r e  positive, and to 
any change in ko (for constant 13,) corresponds an increase of eccentricity. 

Since the function e(ka) in this case is a polygonal line, the first variations 
of e do not vanish. Infinitesimal ecc city variations in circular orbit 
therefore correspond to the singular t in Figure 9.2 (e=O, k=l). 
the eccentricity decreases, the e vs. ka hyperbolas of Figure 9.2 become 
progressively more pointed, approaching the polygonal line ABC. In low- 
eccentricity orbits, the linear relation 

any decrease in ko entails an increase in eccentricity. 
e first  decreases, passes through a minimum, and then increases. 

For  circular orbits, any change in ko entails an increase of eccentricity. 

As 

therefore applies for very small  variations Ae and Aka only. 

orbits, the above linear relation should preferably be replaced with an 
If we a re  dealing with larger finite variations Ae and Ak,inlow-eccentricity 
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approximate formula, which is exact for circular orbits: 

A e z  lAkol .  (9.14) 

In conclusion note that, in accordance with (9.2), 

x > o ,  &l X>O' ako (9.15) 

Hence it follows that our  remarks on the function e(ko) can be extended 
without modification to the functions e ( v o )  and e(ro). 

Passing to the function e@,), we write (9.8) in the form 

whence 
e * = ( l - k o ) 2 + k o ( 2 - & , , )  sinZBo, (9.16) 

(9.17) k 2  k --- 0 '  - 0 )  sin*o,,= I. e2 
(1 - k,)' (1 - ko)' 

For various ko, the function e(siir0o) is represented by the family of 
hyperbolas plotted in Figure 9.3. 
A and C, where 

All these hyperbolas meet at the points 

sin eo= 1, e=. I .  

For sin B0=D, these hyperbolas pass through points with 

e = l l  - & I .  (9.18) 

These points correspond to minimum eccentricity for each given ko. 

13 
P 

FIGURE 9.3. Eccentricity e vs. 0, for various ko = 0. 

The hyperbolas coincide for any two values of k,( & and ki )  which a r e  

1 - k i =  ki - 1, i.e., k,,+ k,, =2. 

symmetric about ko= 1 and are  related by the equality 

(9.19) 
I ,I 
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For  ko= 1, the hyperbolas degenerate into the polygonal line 

e= [ s in  eel, 

and for ko= 0, 2 into the straight line e =  1. 
Differentiating (9.16), we obtain 

(9.20) 

(9.21) 

de de de 

a 0  - 
For eo<o, dBO <0, and fo r  eo>o. e, > O .  For  Bo= 0, =O for all orbits, 

except circular. Fo r  circular orbit (Bo=O, k o = l ) ,  * = -!- 1. 

pericenter to apocenter (Bo>O),  any increase in the angle Bo(for constant ko)  
corresponds to an increase in the eccentricity e .  As the angle Bo decreases 
in this interval, e first decreases, reaches i ts  minimum (9.18), and then 
starts increasing. Along the path from apocenter to pericenter (Bo<O), 
the situation is reversed. 
an increase in eo produces a decrease in eccentricity, which eventually 
gives way to an increase in e .  

It follows from the preceding that in elliptical orbits, along the path from 

A decrease in Bo entails an increase in e, while 

ae At the apocenter and the pericenter points, Bo=O. Therefore, x = O  at 

these points, and the first variations of e corresponding to small variations 
of 00 are  zero. Higher-order variations of eccentricity, however, are  
positive, so that any change in the angle ea (for constant ko)  entails an 
increase in eccentricity. 

e(eo) in this case is represented by a polygonal line, the first  variations of 
e do not vanish. Therefore, infinitesimal variations of eccentricity in 
circular orbits are  represented by the singular point of the family of 
elliptical orbits. 

For  circular orbits, any change in goleads to an increase in e .  Since 

9.4. VARIATIONS OF ANGULAR DISTANCE 
FROM PERICENTER TO INITIAL POSITION 

To find the variations in the angular distance 60 from the pericenter to 
the point of origin, we proceed from expressiom (5.49): 

The angle 60 is assumed to vary between the limits 

(9.22) 

(9.23) 

the points eo= Arc coinciding. 
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The function So(00) is shown in Figure 9.4 for various Ro. From (9.8) 
and (9.22) we have 

I f n  foi k,=O, 
2e0 for k o = 2 .  

(9.24) 
J 

For  the extreme values of the coefficient ko, the functions a re  linear. 
We see from Figure 9.4 that for  all  the intermediate values O<k0<2, the .i 

FIGURE 9.4. Angular distance 9, between the point of origin 

and the pericenter vs. 0, for various ko =-. ro4 
)I 

curves &(eo) lie inside the triangles A B 0  and DCO between these straight 
lines and the ordinate axis. 
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For ko= 1, the eccentricity e can be obtained from (9.20). 

for kD= 1 and e,<O 

From (9.22) 
we have: 

for  k o =  1 and Bo>O 

sin 6,- cos eo, cos eo = - sin eo, *o = e,+;. (9 .26 )  

It follows from these expressions that for ko= 1 the function is represented 
by the polygonal line AKFC (Figure 9.4). 

discontinuous, eo changing abruptly from - 
is attributable to the uncertainty in the position of the pericenter point in 
circular orbits (see Sec. 2.9). 

We see from Figure 9.4 that the polygonal line AKFC divides the entire 
region of allowed 60 into two parts: 

the part inside the triangles AKB and DFC, where &< 1; 
the part inside the triangles AKO and OFC, where k& 1. 
The curves 60(90) in these two dlfferent regions a re  entirely different. 

Fo r  Ro> 1, eo monotonically increases with the angle Bo, running through 

the entire range of allowed values (from eo= -n for eo= -E to eo= +TI 
for BO= +$). 
a minimum emIn(ko) for 90>0 (it should be kept in mind that the curves with 
Bo<O continuously merge into curves with eo>O, since the points B and D 
in Figure 9.4 a r e  in fact a single point). 

At the point eo= 0 the function is 

to + g. This discontinuity 

2 
For  b<1, the curve has a maximum #max(h)  for Bo<O and 

Here 

( 9  2 7 )  

where eo(ko) lmln is the minimum value Iel0 for constant ka< 1, 

(9.23). The allowed values are  restricted by the conditions 
Hence it follows that for  ko<l,  eo does not take values in the entire range 

To find l & ~ ( k ~ ) l ~ ~ ,  we differentiate the last equality in (9 .22 ) .  Making 
use of the second equality in (9 .22 ) ,  we then obtain 

a@, k i  - (2 - ko) ko cos 28, 
2ez 

-= 
880 

Setting the right-hand side equal to zero, we find 

( 9 . 2 9 )  

where eeyt a re  the angles Bo corresponding to the extrema1 values of %. 
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Substituting in the third equality in (9.22), we find 

I (Q lmio = arctg (- (9.30) 

The function S O ( ~ )  is plotted in Figure 9.5 for various angles BO. In 

FIGURE 9.5. Angular distance So between the point of origin 

and the pericenter vs. ko = 0 for various h. r J 
Ir 

particular, from (9.8) and (9.22), we have: 
for 90=0 and k+<l 

e= l  -ko, COS%O= - 1, sin60=0, eo= -+n; 

for eo= 0 and ko>i 
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for C I ~ = _ C +  

e = l ,   COS^+^= - 1, sin & = O ,  @o=&Yc.  

For BO= 0, the function eo(&) is the polygonal line ABED (or A’B’ED) in 
5. 

Figure 9.5. 

AC (or A’C’). 

the second equality, we find 

For  eo= & 5, this function is represented by the straight line 

For  all other values of Bo, the functions are smooth curves. 
Differentiating the third equality in (9.22) with respect to ko and applying 

(9.31) 

It follows from this expression that for &<O, 90 monotonically increases 
with ko, while for Ba>O it monotonically decreases, 

As we have previously observed, for k0>1, the parameter 60 may take 
values in the entire range (9.23). Hence it follows that the @ o ( ~ o )  curves 
corresponding to various Bo f i l l  the entire rectangle B’BCC‘ in Figure 9.5. 

For k o < l ,  the allowed values of % a r e  defined by condition (9.28). 
Hence it follows that for ko< 1, the &,(k0) curves lie outside the region 
defined by the inequality 

1% (ko) ! Q I eo (ko) I mm, 

where I%(ko)]ml,l  is obtained from (9.30). The boundary of this region is 
marked in Figure 9.5 by the curve A‘EA. 

9.5. VARIATION OF PERICENTER 
AND APOCENTER HEIGHTS 

From (5.3) we can write a general expression for the apocenter and the 
pericenter heights, r ,  and rp: 

P=a(l&e),  (9.32) 

where the sign + corresponds to the apocenter point (P=r.), and - to the 
pericenter point ( p = r P ) .  

Thus 

Inserting a and e from (5.43) and (9.16), we find 

(9.33) 
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This equality may be written as  

(9.34) 

w 

Hence it follows that the curve of vs. sin Go (for constant k , )  is a 
hyperbola centered at the point 

I _- :o A -  2--k ,  , 

and I/ko(2-ko)  * ." 

sin e,=o 

1 - k o  1 - k. The branch of the hyperbola and with the semiaxes 2--~,, 
corresponding to ;A1 gives 2 vs. sin e,,, and the second branch (c< f o  1)  

gives :! vs. sineo. 

FIGURE 9.6. Pericenter and apocenter heights vs. Bo 

for various RQ = -. w;: 
P 
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". 

- 
Figure 9.6 plots the function L ( ( s i n 8 , )  for various ko. The curves above 

1 0  - 
the straight line A'B' (i. e., above the line e= 1) correspond to the function 

3 (sin €lo) ,  and the curves below this straight line represent the function 
ro 

-%(sin €lo). 
r0 

In particular, for ko= 0, we have from (9.33) or (9.34) 

In this case, $! and ~ V S .  sin eo a re  represented in Figure 9.6 by the 

For  ko= 1, relation (9.33) takes the form 
horizontal lines A 5  and A'B'. 

- 
-1_=1 &sineo,  (9.36) 
ro 

which is plotted in Figure 9.6 a s  a pair of intersecting straight lines A"OB 

and AOB". 

polygonal line A"O5" plots the function l a  (sin €lo). 

the indeterminacy, we write (9.33) in the form 

The polygonal line AOB gives the function LP(sin €lo), and the 

r0 

ro 

For  k 0 = 2 ,  relations (9.33) and (9.34) a re  indeterminate. To eliminate 

where + corresponds to F=ra,  and - to  ?=rp .  

radicand in a binomial ser ies ,  we may write 
For ko 4 2 ,  the second term under the radical is small. Expanding the 

where R ( ~ o ,  sin eo) is  a bounded function of kO and sin BO. Hence 

L a  = 00, LP = 1 - sin*@,,, (9.37) 
ro 1 0  

i .e.,  the curve LP(sin8,) degenerates into a parabola (ACODB in Figure 9.6). 
1 0  - 

For all other values of Re, the curves L- (sin e,) a re  hyperbolas. 

point €lo= 0 is the maximum of the ratio +! and the minimum of 3. 
10 

The 
1 0  

From (9.33) we see that for  Bo= 0, 

(9.38) 
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where f corresponds to ?=ra, and - to ?-rp. Hence 

(9.39) 

These relations reflect the obvious fact that for 00= 0 and k o < l ,  the 
apogee point of the orbit coincides with the point of origin, and the perigee 
lies below this point (ra=ro, rp<ro) .  
which coincides with the point of origin, and the apogee is located at a 
greater altitude ( ra>ro, rp=ro) * 

For eo= k;, we have from (9.33) 

For  eo= 0 and k o > l ,  it is the perigee 

(9.40) 

Comparing the various results, we see that for ko< 1, the function 

IP (sineO) is a hyperbola through the points A, E,  which lies inside the 

triangle AOB (Figure 9.6). 

a hyperbola through the point 0, which lies inside the triangles A‘OA“ 
and E’OB‘’. 

TO 

The function La (sin &I), on the other hand, is 
r b  

For ka> 1, the curves +: (sin eo) are  hyperbolas through the points A,  0, B .  

These curves lie inside the region enclosed by the parabola ACODE and the 

polygonal line AOE. Since a l l  the $: (sin&) curves pass below the parabola 

ACODB,  this parabola, defined by (9.37), gives the largest possible value 

of the ratio +: for  a given 0, and an arbitrary b. The hyperbolas $: (sin eo), 

for  ko> 1, pass above the polygonal line A”0B”. 

satellite in the Earth‘s  atmosphere (and therefore its total lifetime) is 
mainly determined by the pericenter distance rp 
orbited, an attempt is therefore always made to attain a maximum perigee 
height. It is moreover essential that the parameter rp should remain stable 
irrespective of various deviations in the initial conditions of motion 
(injection e r rors ) .  
a r e  satisfied if eo= 0. 
final orbit so that this equality is observed with the greatest possible 
precision. 

is a singular point of the family L- (k,, eo). As we approach this point, 

the L- (ko, 80) curves become progressively more pointed, moving closer 

to the two intersecting lines. 
sensitive to e r r a r s  in the injection angle eo (in comparison to orbits with 

We shall show in what follows that the deceleration of a low-flying 

When a satellite is 

It follows from the preceding that both these requirements 
The satellites should therefore be launched into their 

We see from Figure 9.6 that the point 0 of circular orbit ( k ~ =  1. eO=O) - 
., TO 

TO 

The distance rp becomes progressively more 
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e o =  0 and ko #O). 
with the launching of satellites into exactly circular orbits. 

on the distances ra and rp. we derive expressions for the corresponding 
derivatives. Differentiating (9.32) with respect to some parameter 
Q ( Q = ~ o ,  uo, r0) ,  we obtain 

These factors a re  among the main reasons interfering 

To determine the influence of small  deviations in the initial conditions 

(9.41) 

where + corresponds to Pe=ra, and - to F=rp. 
Hence, making use of (5.43), (9.2), (9.3), (9.13), and (9.21), we find 

1 

2- 2ako ( 1  f e  k,-1 
duo oo 2-k, ' - e cos2 eo). 

(9.42) 

Let us consider in greater detail the case Bo= 0. 

dr" -=O, 4 

From (9.18), we see  
that for  k o f l  

(9.43) 

It follows from these expressions that the derivatives a re  discontinuous 
a; at the point Bo= 0, kp= 1. Let (x) be the value of these derivatives to the 

"right" from the discontinuity (i. e., the values obtaining a s  we move from 

the direction of large 9 )  and (g) their value to the "left" from the 

discontinuity (i. e., the values obtaining a s  we move from the direction of 

small 9 ) .  Also note that for  e,= 0 and ko= 1, relation (9.42) for &- becomes 

indeterminate. To eliminate the indeterminacy, we  make use of (9.20). 

+ 

& - 

aeo 
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(9.44) 

These relations can be derived from the results of Sec. 2.3. Let vaand 
pp stand for the angular distances of the apocenter and the pericenter from 
the point of origin. From Sec. 2.4 we have 

n I 'Pa=T. 'pp=-s for bo= 1, $>O; 

Qa= --%, .(pp=$ for k o = l ,  eo<@ 
qa=z, pp=O for k o > l ,  $=@ 
pa= 0, 'pp= n for bo< 1, QO=O. 

(9.45) 

We now determine the derivatives 

dr dr ar - -  
No ' dr, ' and - do0 

at the points y=&$, 0, and n. 

(2.17) and (2.18). 
Ae0 is equivalent to a variation Au,.,=wA60in the radial velocity. 

To this end, we make use of equalities 

Note that in circular orbit Auo=Au,o, and the variation 
Thus, 

dr dr 

dr dr 

- dro (O)= 1, =(.2)=3, 

- ( O ) = O ,  b ( " ) = 4 5 .  
dvo VO VO 

(9.46) 

We see that at the given points 01' the orbit (those specified by the angle 
If, however, we apply equalities (9.45) and p), the derivatives a r e  finite. 

remember that the pericenter point changes discontinuously in nearly 
circular orbit, the derivatives become indeterminate and (9.44) obtain 
directly from (9.46). 

From (9.38) and (9.43) it follows that for small  90, with k o f l ,  the 
distances ra and rp can be determined from the approximate relation 
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This relation is meaningless a s  %-+I (orbits close to circular), since 
a2r here -+cQ. 
de; 

For  nearly circular orbits ( k o c l )  this relation should therefore 

be replaced with the approximate equality 

P = r d l r t  1001)~ (9.48) 

which obtains directly from (9.44). 

9.6. 
THE ORIENTATION O F  THE ORBITAL PLANE 

VARIATIONS OF ELEMENTS WHICH DEFINE 

Let ro be the vector specifying the initial position (i. e., the point of 
origin) D in orbit, and vo the initial velocity vector at that point. 
change in the orientation of the orbital plane entails a change in the 
projections of these vectors along the normal to the original orbital plane 
(for unperturbed orbital plane, these projections are  of course zero). Let 
the projections of the disturbed vectors r, and w0 on the orbit-plane normal 
be t o  and ~60. 
with the distance r to the primary and the flight velocity v )  and proceed 
to investigate the influence of these perturbations on the orientation of the 
orbital plane. All calculations will be made to terms of the first  order  of 
smallness. 
satellite appears to move counterclockwise in unperturbed orbit, if  viewed 
from the positive tip of the vector CO o r  v~o. 

In our analysis of the deviations GO of the initial position from unperturbed 
orbital plane, we take the initial velocity vector 00 to be unperturbed ( q o =  0). 
Let D and Di be the initial and the displaced positions of the point of origin, 
and r, the vector which defines the position of the point Di in space 
(Figure 9.7). 
the planes through the vectors r, vo and r,, vo respectively (the origin of 
the vectors ro and r, is fixed at the gravitational center 0, while vo is a 
sliding vector). 
of attraction 0, parallel to the vector wo, 
reduces to a rotation of the orbital plane through some angle $ around the 
axis MN. Let uo be the angle QOD which specifies the angular distance of 
the point D from the node Q, and tii the angle QOM which defines the 
orientation of the axis MN (the angles uo and uj  a r e  reckoned in the direction 
of satellite motion, and the point M is so chosen that an observer at this 
point sees  the orbital plane as rotating counterclockwise for a positive 
perturbation Go). 

Any 

We assume that these quantities are  small (in comparison 

The positive directions for 50 and W ~ O  are  s o  chosen that the 

The initial and the perturbed orbital planes a re  defined as 

These planes intersect along the line MN through the center 
The orbital perturbation therefore 

Making use of Figure 9.7, we can show that 

(9.49) 

To find the angle $> a normal DK is dropped from the point D on the 
axis MN. Since LODK=0o ( %being the angle between the vector wo and the 
in-plane normal to the vector ro), we have 

DK = ro cos ea 
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where ro is the magnitude of the vector ro. 
order  of smallness, 

Hence, to terms of the first 

LO q=- 
ro cos Bo ' (9.50) 

Let us now consider the influence of the initial velocity perturbation vu60 
(for constant ro) .  
plane is rotated around the axis OD through the center of attraction 0 and 
the point of origin D.  
rotation axis and the angle of rotation 9 are  obtained from the relations 

From Figure 9.8 we see that in this case the orbital 

The angle ut which defines the direction of the 

The orbital plane is thus rotated through a small angle J, around an axis 
through the gravitational center, which makes an angle u ,  with the orbit 's 
line of nodes. 
of the ascending node Q, on the inclination i of the orbit, and on the angular 
distance u to the ascending node. 

Let us  consider the influence of this rotation on the position 

Figure 9.9 is a diagram showing the 

FIGURE 9.7. Rotation of the orbital plane 
as the initial position is displaced at  right 
angles to this plane. 

FIGURE 9.8. A change in the orientation of 
the orbital plane as the initlal velocity vector 
is rotated at  right angles to this plane. 

FIGURE 9.9. A change in the position of the 
node & and in the inclination I as the orbit 
is rotated around an in-plane axis. 

I44 



intersection of the perturbed and the unperturbed orbital planes with some 
sphere described about the center of attraction 0. and 
are the ascending nodes of the unperturbed and the perturbed orbits, and 
the line OM is the axis of rotation of the orbital plane (the point M is so 
chosen that an observer at this point s ees  the orbital plane a s  rotating 
counterclockwise). 
i ,  a, and ul on rotation. 

The points 

Let Ai, A q ,  and Au be the variations of the elements 
From the spherical triangle Q M a ,  we have 

cos(I+Ai)=cosicosll,-sini singcosu,, 
sin AG = 

cos (ul+ Au) = cos IC, cos AQ, + sin u, sin AQ, cos i. 
s in( i+Af)  sin ** (9.52) 

Linearizing these relations (for small  g, Ad?,, A i ,  and Au), we obtain 
approx h a t e  equalities 

(9.53) 

Expressions (9.53) a r e  clearly meaningless for i + O .  Note that in the 
absence of in-plane perturbations, the variation Au characterizes the 
displacement of the node Q, relative to all the points of the orbit. 
angular distance of any point of the orbit from the node therefore changes 
by Au; this of course applies also to the angular distance o of the pericenter. 
Thus, 

The 

A@= AIL = - AQ, cosi = - * t g i  9. (9.54) 

Substituting (9.49) and (9.50) in (9.53) and (9.54), we find forthevariations 
and o when the point of origin deviates from the orbital of the elements i, 

plane 
Ai E sin @a - 60) 

r,cose, L 
cos ((10 - e,! 

*Q = - to cos e, sin 1 L 

Hence 
at sin (u, -e,) -- q, - rocos6, ' I 

I cos (u, - e,) 
r, cos eo sin i ' 

aa-_ 
-;%;; - 

I do COS (u,--sI x= rocoseotgr * 

Applying (9.51), (9.53), and (9.54), we similarly write 

ai COS U, 
d"to vo cos e, ' -=- 

asl sln uo 

dve, 
a0 sin u, 

&so 

-= 
vg cos 6, sin I ' 

-=- 
w, cos 8,tg i * 

(9.55) 

(9.56) 
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Chapter 10 

RELATIONSHIP BE TWEEN VARIATIONS IN 
CURRENT PARAMETERS AND IN INITIAL 
CONDIXIONS OF MOTION 

10.1. BASIC RELATIONS 

Any point D of the orbit can be defined by a single parameter s which 
varies continuously in the course of motion, such a s  the flight time t ,  the 
angular distance u from a fixed point, the eccentric anomaly E ,  the distance 
r from the primary, the flight velocity u ,  etc. The main requirement 
governing our choice of the orbit parameter s is that there should be a 
one-to-one correspondence between the position of D and the value of s. 
This correspondence must hold true either along the entire orbit (for 
s = t ,  U, E,. . .) o r  over a certain partial trajectory (for s=r, v,, . .). 
point of the orbit is completely specified by six independent elements pi 
( i  = 1, 2, . . . , 6), which a re  sufficient for calculating the future course 
of' motion, For  s = t ,  the coordinates and the velocity components of the 
mass center may be adopted a s  the p i .  If s is one of the coordinates, 
p i  comprise the other two coordinates, time, and velocity components. 
We call these p i  the c u r r e n t  p a r a m e t e r s  of m o t i o n .  Different 
sets of current parameters a re  generally interchanged without difficulty. 
Furthermore, if  the initial conditions of motion (or the orbital elements) 
qj ( j  = 1 ,  2,. . . , 6) a r e  known, then the parameters p, for a given s can be 
easily calculated from the relations in Chapters 4 -7. A more difficult, 
though no less important, problem is to establish a relationship between 
the variations Aqj and Api of these parameters. 

of smallness, 

The position of the center of mass of a body at a parametrically defined 

If the variations Ap,and Aqj a re  small, then to terms of higher order  

. . . . . . . . . . . . . . . . . . . . . . .  
(10.1) 

Here the subscript s in the variations, A,pi, and in the partial derivatives, 

(%), indicates that variation and differentiation is carried out for s =const. 
dqj s 
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Relations (10.1) can be written in matrix form: 

' ASP1 

A S P 2  

@ P I S =  : 
'sP6 

(10.2) 

4 1  

4 2  - (Ad= ; 8 

A% 

(10.3) 

relations can be determined without much difficulty by a transformation 
of coordinates at the point of origin DO and the current point D. Multiplying 

(10.4) 

wnere 
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Let us now consider how the partial derivatives (%)# are  transformed 

when we  pass from the parameter s to some other parameter u in defining 
the position of the current point D in orbit. 
unperturbed orbit and a slightly deviating perturbed path D0D'D'' (Figure 10.1). 

Take a path DoD along the 

FIGURE 10.1. Positions of a perturbed point 
for different choices of the orbit parameter. 

Let st, uI, p i l  be the values of the parameters s, u, p i  at the current point D 
of unperturbed orbit. Fo r  a constant s ,  the point D is mapped into some 
point D'of the perturbed orbit, and for a constant u, it is mapped into 
some point D". The relevant parameters take the following values at 
these perturbed points: 

where A& and A,@ are  the variations of p i  and G for s=const. and Amp, and A,s 
are  the variations of p i  and s for cf=const. 
order  of smallness, 

Hence, to te rms  of higher 

where the derivative %is taken along the unperturbed trajectory. 

Inserting p,(D') and pi (D") from the previous expressions, we find 

Asp1 = $pi + % A p  

Dividing the right- and the left-hand sides of this equality by the 
increment be, in any of the initial conditions and taking the limit, we find 

(10.6) 

a0 

dq1 
where ($-) is the partial derivative - for s=const. 

From (10.5) and (10.6) it follows that if the matrix I g:; :;; 1::: :: L is known 

for some set  of the parameters pi .  4,. S (i, j =  1. 2, . . . , 6) ,  the corresponding 
matrix can always be found for any other set  of parameters. 
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Some current parameters of motion in unperturbed orbit may meet the 
condition 

p, =const. (10.6a) 

This applies, in particular, for the following parameters: 

plane and for the normal projection vg of the velocity vector; 

velocity component u,, and the radial velocity component v,  (this, of course, 
in addition to 6 and u t ) .  

(a) in any orbit, for the displacement 6 at right angles to the orbital 

(b) in unperturbed circular orbit, for the radius r, the longitudinal 

Then in unperturbed orbit -& 0, and relation (10.6) takes the form 

In other words, for  current parameters of motion which satisfy condition 

a re  independent of the choice of the parameter S .  
dPl 

q/ 
(10.6 a), the derivatives 

We shall henceforth omit the parametric subscript when dealing with 
derivatives of this kind. 

10.2. VARIATIONS IN THE PARAMETERS O F  
MOTION FOR CONSTANT ANGULAR DISTANCE 
FROM THE POINT O F  ORIGIN 

We shall operate in cylindrical coordinates Otuf, (the axis 5 perpendicular 
to the plane of the drawing, pointing toward the reader; see Figure 10.2). 
The point of origin is some point Do of the orbit corresponding to the starting 
instant f = t o ;  the initial conditions of motion a r e  the coordinates ro, U O ,  

FlGURE 10.2, lnitial conditions and current 
parameters of motion in  cylindrical coordmates. 

and the corresponding velocity components v , ~ = h ,  v,O=roiCo, q ~ = &  at the 
point &(in unperturbed orbit f,!j=vp =O). 
and unperturbed orbits is defined by assuming constant angular distance 
from the point of origin, 

The current point D in perturbed 

cp=u - uo, (10.7) 
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where uo is the angular coordinate of the unperturbed point of origin (it need 
not be the same for the perturbed orbit, since the point D o i s  determined 
from the condition to=const). 

particular point, the coordinates r ,  5 and the velocity components ir,, vu# ut 
at that point. 

The current parameters of motion a re  the time of arrival t at the 

In calculating the matrix elements of 

we make use of the fact that small perturbations in the orbital plane a r e  
independent of perturbations at right angles to that plane. Thus, 

pi r ,  t ,  V r ,  4, = &, T ~ O ;  

* = O  dq, f o r (  pi = t, vg; qj=ro* uo, V,O* vu@. (10.8) 

Moreover, the partial derivatives with respect to u,, are  easily found 
by rotating the orbit through an angle AUO in i ts  plane around the gravitational 
center 0; the derivatives with respect to 50 and vyo are  obtained by rotating 
t k  orbital plane (see Sec. 9.6).  

derivatives (%)'pfor pl=r ,  t ,  v,, u, and q ,=r~ ,  V ~ O ,  GO. 

This being so,  we first  calculate the 

10.3. PARTIAL DERIVATIVES OF THE 
CURRENT RADIUS FOR qn = const 

We shall make use of relation (4.19) and the equality 

cp=8-*o,, (10.9) 

where 6" and I? a re  the true anomalies at the point of origin and at the 
current point. We obtain 

(10.10) P P ' == 1 + e  cos (eo + cp) = 1 + e  cos 6, cos cp- e sin B, sin 'p 

On the other hand, f rom (4.18), (4.21), and (5.45), we have 

I p = roko cos? $, e sin &, = IZ, sin 8, cos Bo, 

rod e cos V,, = Ro cos2 9, - 1, ko = I*, 
(10.11) 

where vo and 00 a re  the magnitude of the initial velocity vector and its 
inclination to the local horizon at the point of origin; thus, 

vi = w k  + w&, uo cos eo = wuo, v,, sin Bo = v ~ .  (10.12) 

Substituting (10.11) in (10.10), we find 

roko cos2 Bo - rok, cos2 0, ' = 1 + (k,cos2B,-l) cos cp- k,  sln 0, cos 8, sin cp - 1 - cos cp 4- k,  cos Bo cos (9 +e,) ' 
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1 - cos q 

5 COS eo - COS eo cos (V + e,) 

whence 
ko = (10.13) 

-.I 

From (10.11) and ( l O , l Z ) ,  ko, vo, eo are expressed in t e rms  of v,.~, vue, f o ,  

and p, so that (10.13) takes the form 

(10.14) r2 
(I -cosq)p.+ r o ~ ~ ~ ~ c o s c p - ~ u o u , o s i n q ~ - ~ ~ ~ o = ~ .  

Differentiating this equality for cp=const, we have 

(vio cos cp - v,,v, sin cp - + vi") dro+ 

d 
I 4 ) + [ 2 ( ro cos 'ip - vrx) - rovr0 sin tp dcJU0 - 

- rovuO sin q dvro = - -p- v:,dr. 

Hence the expressions for the partial derivatives 

(10.15) 

Making u s e  of (5.44) and (10.9), we write 

Vro e s i n ~ O s i n V - ( l + e c o s ~ ~ ) c o s ~  fl- ,,/$ ~ C ~ S * + C O S V  - s inq  - cos cp = 
V,O V U 0  *PO 

On the other hand, from (4.19) we have 

ecos*=+!-l. 

Hence 

10.16) 

VIA0 sin q- cos cp = - - vu0 ' fi(: -I+cosrp). (10.17) or0 - 

Furthermore, applying (10.11) and (lO.lZ), we write 

(10.18) r ~ v ~ ,  Ir 
P = p , G = rut',o, G=x. 

Substituting (5.11), (10.1'7), and (10.18) in  (10.15), we find 

(10.19) 
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10.4. 
COMPONENTS v ,  AND vu FOR 'p = const 

PARTIAL DERIVATIVES OF THE VELOCITY 

To find the partial derivatives of the longitudinal velocity component v., 
w e  make use of (5.11) and (10.18), which give 

(10.20) 

Inserting from (10.15) in the right-hand sides of these equalities, w e  find 

Hence, applying (5.11), (10.1'7), and (10.18), we have 

(10.22) 

To find the radial velocity component vrr we make use of relations 
(5.13) and (10.9), which give 

v, = f i e  sin (cp+ 6,) = f i e  cos 6, sin cp+ v,,, cos cp. 

On the other hand, from (5.11) and (10.18), we have 

(10.23) 

Thus 

vr = v,,,cos q+ (vue - A) sin 9. 
rofJ,,o 

(10.24) 
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Differentiating for q=const and applying (10.18), we have 

(10.25) 

10.5. PARTIAL DERIVATIVES OF 
FLIGHT TIME t FOR rp = const 

To determine the flight time t from the point of origin Do to the current 
point D, we make use of (6.28) and (10.18), which give 

Here the current angle u is reckoned from the point Do (uo=O). 
Differentiating (10.26) for  q=const, we find 

(10.26) 

(10.27) 

Inserting from (10.15) in the right-hand sides of these relations and 
applying (10.18) and (10.26), we find 

The problem thus reduces to the evaluation of the integrals 

(10.29) 
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Applying (10.9), we write 
n 8 8 

where & is the current t rue anomaly, defined by 

E = 6 0 + U *  (10.31) 

Now, making use of (4.19), we write 

Seeing that 

(1 + e cos E ) ,  sin E =  - -- I d  
e df 

we have 

To evaluate the second integral in the right-hand side of (10.30), we 
write it as a sum of two integrals 

Now, taking the well-known recursive formula 1 2 5 1  

-+ dx  - 1 b s l n x  - s (a+bcosx)" ( n - l ) ( a z - b * )  [- ( a f b c o s ~ ) ' - ~  
ax  dx 

and putting 

x = &  a = l ,  b = e ,  n=2, 3 ,  

we find 

Hence 

(10.34) 
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On the other hand, f rom (10.34) we have 

Substituting this expression in the preceding equality, we find 

Equality (10.33) is now written as 

Note that from (4.19), (10.9), (10.26), and (10.31), 

(10.36) 

Substituting (4.19), (5.13), and (10.36) in (10.35) and making use of (5.2), 
we find 

0 

J races E r i 5  = (- 3e G t + f f i ~ r v , ( f +  p )  - rev,, (To+ p11). ( 10.37) 
0 

Applying (10.30), (10.32), and (10.37), we write for  the f i rs t  integral 
in (10.29) 

J ,  = $(rz - rt) cos Bo -5 (-3e fi f + f ~ [ r u , ( r + p ) - r , w , ~ ( r ~ P ) J  1 sin Bw ( 10.38) 

We should now eliminate the t rue anomaly &,from this expression and 

Making use of (5.2), (5.11), (5.13), (10.9), and (10.16), 
ensure that no indeterminate forms obtain as e+O (i. e., on passing to 
circular orbits). 
we have 

1 -e2 J1 = -+ [3pw,l+ 8 (r2 - f:) cos 9, - 
- r (r + p )  sin 6 sin 6, + ro(ro + p) sin2e0] = 

= + [ 3 p w d t - f  ( f + p ) C O S ' P + f ( f + p ) C O S 6 C O S  Bo+ 

+ ro tro + P) - r o t o +  PI cos2 eo+ 

+T cos 6,- (rz - ri )e cos 6 = 
2 - r i  

0 1  

= +{ 3pvJ-f ( f 3 - p )  cos q+f&o+p)-(f+;)(;- l)+ 
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or finally 

(10.39) 
i.4 

'13 JI = 2 apr [y 3v& - (1 + $)cos 'p+ 2 3 -Zy- - 
r P ro 

The second integral in (10.29) is evaluated analogously. From (5.13), 
(10.9), (10.16), (10.31), (10.32), and (10.37), we have 

+ y [r (f + p )  ($-l)-ro (TO+ p )  (6- 1) + P-f;] 1 , 
o r  finally, 

J, = 4 [ - 3 (5 - 1) @ t + r (r + p )  sin 'p - <+(rz - r@ v ~ ]  . ( 1 0.4 0) 

We now calculate the derivatives (5) ar, av,,l and (&)9. To find the , ( df ) 
first derivative, we make use of relations (5.16), (10.9) and write expression 

(10.15) for ($)q in the form 

(k) dr, (p =e( r: 1 + e  cos6, sincp-cosrp 
r* e (sin 6, sin 'p - cos 6, cos 9) -cos 'p r 

(e cos 6 +cos q) + 2 $. 
-_ - +2-= 4 1+ecosa0 '0 

(10.4 1) 
rz - _ _  - 
rap 

Substituting this equality in the third expression in (10.27), we have 
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Inserting for the integrals their expressions (10.26), (10.29), (10.37), and 
(10.40), we find 

3t 
a* 

3ta ro e2ro p -  r,, 
+ 3  c p  (5 - 1) t--r ( r + p )  sin cp+ G(r'-r$q,,) =z (7 + p+ -) P - 

ra 
(1 + $-) sin 9. ra rvr + vr rovro urn rvro rovro - __ 

-T (G ro r p  r rOp +-TI r o G  
..I 

Now, from (5.2) 

3f ' (l+f)sincp}. (10.42) 
'UP 

To find the derivative (E), we make use of relations (10.28), (10.29), 
and (10.39), which give 

To obtain the derivative (&)$ we note that in accordance with (10.15), 
(10.18), and (10.27) 

where J 2  is defined by (10.29). 
we find 

Thus, making use of (10.40) and (10.42), 

-- ro  ;F;; (1 +$) sin cp}-$ [- 3 vz($ - 1) f + 

(10.44) 
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10.6. DERIVATIVES WITH RESPECT 
TO THE ANGULAR COORDINATE uo 

If the point of origin DO is displaced by AUO, the entire orbit rotates in i ts  
plane around the gravitational center 0 through the same angle (Figure 10.3). 
The path DoD of unperturbed orbit is transformed into the path L);l)'of the 
pe-turbed (rotated) orbit. 
defines a point 0; on the radius OD. A l l  the parameters of motion at this 

The condition cp=const for the perturbed orbit 
* 

FIGURE 10.3. Variation in current parameters of 
motion when the point of origin is displaced by Abug 

point a r e  identical with the parameters of motion at some point &of 
unperturbed orbit. This unperturbed point is displaced from the initial 
position of the point D by - Auo (the sign - is introduced since the angle 
Auo is reckoned against the rotation of the orbit). 
partial derivative of any parameter of motion p i  at the current point 
with cp=const: 

We thus obtain for the 

(10.45) 

dP where the derivatives 2, pi, and .& are  taken for unperturbed orbit. 

From (2 .2)  and (5.11) we see  that in unperturbed orbit (for S=T=O) 

;=v,, i = ~ ,  r i = s  r '  

(10.46) 

vu=-?. VrVu 

I 

Substituting these equalities in (10.45) (and putting successively pi=r, t ,  u,, uJ, 
we find 

(10.47) 
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10.7. PARTIAL DERIVATIVES OF PARAMETERS 
DESCRIBING THE DISPLACEMENT OF THE SATELLITE 
AT RIGHT ANGLES TO UNPERTURBED ORBITAL PLANE 

a4 

We have shown in Sec. 9.6 that normal perturbations rotate the orbital 
plane around some axis through the gravitational center 0. The lateral 
displacement A5 of the current point D is defined by the displacement of 
the radius-vector r joining the center of attraction 0 with the point D 
(Figure 10.4). is equal to the 

,. 
The lateral velocity perturbation* Aut 

FIGURE 10.4. 
orbital plane for lateraldisplacement of the point of origm Do. 

The position of the rotation axis MN of the 

corresponding displacement of the tip of the velocity vector v at the current 
point. 
between this vector and the axis of rotation of the orbital plane, MN. As 
the orbital plane rotates through a small angle *, the tip of the vector A 
is displaced by 

Let A stand for either of the vectors r and v, and let a be the ang1e:x:k 

1 1  

AA = $ I  A I sina. (10.48) 

From See. 9.6 it follows that lateral displacement A t  of the point Do 
corresponds to a rotation of the orbital plane around an axis parallel to 
the velocity vector at that point, through an angle defined by equality(9.50): 

(10.49) 

where 00 is the angle between the initial velocity vector and the local horizon. 
We see from Figure 10.4 that in this case the angle ar between the axis 

of rotation MN and the radius-vector r of the current point is 

(10.50) 

Hence, applying (10.48) and (10.49), we find an expression for the lateral 
displacement of the current point: 

Ag= rcos(%+$') 
r,cosoo 

1he positive direction for At and Aut is at right angles to  tile plane of the drawing, toward the reader. 
* *  1111s angle is positive i f  the vcctor A rotates cluckwise. 
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Thus, 

T7= 'Os rocose0 (eo+'P) =I ro (coscp -sin cp tg e,) = 2 (cos cp--Vrosin VU0 cpf . (10.51) 
.* 

Making use of (4.19), (5.16), (10.9), and (10.16), w e  transform this 
expr e s s ion, writing 

at, f == ;a(cos q-+e sin 6, sin q) = 

= -L ( L c o s  cp- e sin U, sin cp == 

= $ [(I + e  cos 6,) COS cp -e sin eo sin 'pj = 
P ro  1 

=$(coscp+ecos*) =z(coscp++ P - 1) , 

where 

v= 6o+cp, 

o r  finally 

( 1 0 . 5 2 )  
= = I  at +(I -coscp). 

dvg . 
dC0 

The derivative -is found analogously. The velocity vector v at the 
current point is conveniently represented as a sum of its components in  
the directions r and u (see Figure 10.4): 

v=v,+vu. 

Expression (10.48) takes the form 

(10.53) 

Av6 = g(u, sin a, f vu sin (10.54) 

where a ,  is the angle between the rotation axis MN of the orbital plane and 
the vector vu. 

From Figure 10.4 we see that:: 

Hence, applying (10.49) and (10.50), we find 

* The minus sign infrontof the expression (eo + IP) indicates that the vector hdev ia t e s  counterclockwise 
from the axis MN, 1. e., in the direction of negative a. 
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Making use of (4.19), (5.11), (5.13), (5.16), (10.9), and (10.16), we 
write for this formula 

r0 3 = Lfl: [e  sin 6 (cos cp -- e sin 6o sin q) - 
-(1+ecos6)(sincp+$sin~,coscp)]= 
aso r0 P 

.!- fi [. sin6 (%cos cp- e sineo sin cp) - 
P 

- (1 + e  cos *)(A sin cp+ e sin eo cos cp = 

=J- f i i e  sin 6 [(I + e  cos  cos cp--e sineo sin cp1- 
- ( I  +ecos@)[(l +ecos6,,)sincp+esin60coscp)]f = 

= 1 
- e2 sin 6 sin eo sin cp - (1 + e  cos 6) e sin 6, COS cp) = 

= -1 6[(1 +e cos*,,)(sin cp - e  sin fro)+ 

+e~sin6,cos60+esin6,,coscp]= 

= - e1(1 + e  cos+,,) sin cp-esin so+e coscpsin+,j= 

= - 1 f-$sin cp+ e sin 8 -e  sin eo), 

ro )I 
P 

((1 + e cos eo) [e sin 6 cos cp - (I+e cos 6) sin 91- 
P 

P 

P 

P 

o r  finally, 

(10.55) 

Lateral perturbation A ~ o  of the initial velocity rotates the orbital plane 
around the axis DoO joining the point of origin with the center of attraction. 
The rotation angle is obtained from the second equality in (9.51). 

(10.56) 

The angles between the rotation axis DoO and the vectors r ( o r  er) and w,, 
respectively, are 

a'=n-cp, a'=X-cp 
U 2 '  

Hence, applying (10.48), and (10.54), we obtain 

dvt - v, sin cp + vu cos cp -- 
dvt0 vu0 

(10.57) 

The second equality can be transformed making use of (5.11), (5.13), 
and (10.9). We write 
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or finally, from (10.16), 

dc 
5 - 1  -O(l -ccoscp). "vso- P 

(10.58) -< 

10.8. 
CURRENT PARAMETERS WITH RESPECT T O  T H E  
INITIAL CONDITIONS O F  MOTION FOR cp = const 

LIST OF THE PARTIAL DERIVATIVES OF T H E  

ar. t. vr, vu, 6. v 
From (10.8) we see  that the matrix /I are. uw vrw tiuw k,{o@ (can be written a s  

(10.59) 

where the matrix 

specify in-orbit variations, whereas the matrix jl 2 it, :, Ij consists of partial 

derivatives which correspond to displacements at right angles to the orbital 
plane. 
obtained from expressions (10.19), (10.22), (10.25), (10.42), (10.43), (10.44), 
(10.4'7), (10.52), (10.55), (10.57), and (10.58). 

t' "' vu 1 comprises the partial derivatives which I1 are. uon uro. v m  cp 

Tables 10.1 and 10.2 present a summary of the matrix elements, 

TABLE 10.1 

~~ 

-- (1 -cos cp) 
P 

sin v 
VU 

cos cp 

[I + f - ($+$) ros 4 

(I +%) sin q 

- - ro + (1 + +) cos cp 
P 
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The formulas listed in the table apply for circular, elliptical, and 
hyperbolic orbits. For parabolic orbits, the expressions defining the 

derivatives ($-),. (&)q and (G)q, become indeterminate and further 

calculations a re  required. 

10.9. 
PARAMETERS WITH RESPECT TO THE INITIAL 
CONDITIONS OF MOTION FOR ‘p = const AND FIXED 
ANGULAR POSITION OF THE POINT OF ORIGIN 

PARTIAL DERIVATIVES OF THE CURRENT 

In some problems it is often advisable to define the point of origin Do 
not a s  a point corresponding to some epoch t=to,  but preferably a s  a 
point at constant angular distance u=uo from the zero-point axis. In 
this case the time of arr ival  at this point, to ,  is interpreted a s  an initial 
condition of motion, i. e., the set of initial conditions ro, UO, urn, vue, 60, V ~ O  

accepted in Sec. 10.2 is replaced with the set  ro, to, v ,~ .  vuO, so, v ~ .  The 

for the displacements at right angles to the orbital plane 

remains a s  before. 
(making use of (10.5)) 

For  the matrix of in-plane displacements, we write 

ar, t, vr. vu ar, t. vr. V, are, u0, vr0. vu, U dro* to- Vros Vu0 IL=II drir uo- Vro. Vuo IIqU dros to-  vroi vlto 1’ 
On the other hand, from (10.46) we have 

Substituting this expression in the preceding equality, we find that only the 
second column of the matrix is altered under this transformation. The 
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entries in this column can be obtained from formulas of the form 

These partial derivatives, however, a r e  obtained much more simply 
i f  we remember that the shape of the orbit i s  insensitive to changes in 
the time to.  Then 

The matrix elements of 

(10.60) 

are thus obtained from Table 10.1 if  expressions (10.60) a r e  substituted in 
the second column of this table. 

10.10. 
PARAMETERS WITH RESPECT TO THE INITIAL 
CONDITIONS OF MOTION FOR f=const 

PARTIAL DERIVATIVES OF THE CURRENT 

Let r ,  u, u,., vu, 5, vc be the set  of the current parameters of motion. Our 
problem i s  to find the matrix of the partial derivatives of these parameters 
with respect to the initial conditions ro, uo, ua, vu@, to, ugo for t=const. 
analogy with (10.59), we write 

By 

The problem thus reduces to calculating the matrixelements of 11 d:ut: ~ : b , v ~ u o  ,. I 
We make use of relations 

Applying (10.46), (10.47), 

(10.6), which give 

(10.61) 

(10.61) and seeing that from (10.7) (*)=o, 
dqj rp 
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we find 

On passing from the initial conditions ro, u,,. V,O, vu,,&,, ufo to ro, t o ,  u,~, vue, 60, vgo. 
we alter only the second column of the matrix (see See. 10.9). 
(10.46), (10.60), and (10.61) it follows that the entries in this column a re  
defined by 

From 

Making use of relations (10.62), (10.62 a) and Table 10.1, w e  can always 
dr, U. v,, u,, dr. u. t i r ,  v,, 

find the matrix elements of I are, Ita, wro, wuo 11 I and I1 dr,. to. v r o . u , o l  

cases,  however, it is desirable to follow a simpler course. 

~n some 

To find the derivative we make use of (10.19), (10.42), and (10.62), 

which give 

where 
F = (1 - e2) (23- e cos d - cos (p) + (1 + e  cos 6)e2 sin2 6 f 

+e2sin26 -e2 sin 6 sin 6, + ( ! + e  cos d)e sin 6 sin cp. 

Note that in accordance with (10.9) 

sin 6 sin eo = cos cp - cos 6 cos So, 
sin 6 sin cp = cos e,, - cos 6 cos q ~ .  

Thus 
F = 2+ e cos 6 -cos cp - 2e2 - e3 cos 6. -+Ccos cp+ 

+2e2 sin2 6+ @cos 6 sin2 6 -e2cos cp-i- e2cos 6 cos eo+ 
-I-2e cos 6, - 2e cos 6 cos cp+e2 cos 0. cos 6, - - e2 cos26 cos cp=2 (I+ecos @+e cos 6,+e~cos6cos6,)- 
- cos cp(1 + e  cos - e cos 6 - 2e2cos28 - e” cos3 6 = 
=2(  1 + e  cos 6) (1 + e  cos 8,) - 
- ~ c ~ ~ c p ~ e c o s ~ ~ ~ ~ + e c o s ~ ~ = ~ ( ~  $+l+-coscp). 

(10.63) 

( 10.64) 
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Substituting in (10.63), we obtain 

(10.65) a t+--(2 l r  ;+ 1 ---coscp 

The derivatives (&)t and (&)t a re  determined analogously. From 

(10.43) we have 

(K) %I 1 = vu 'sinq-%[3vr,i--r P ( t+- 2 cosq+2ro--' P T ro 2- 1 11 = 

= - a ( 2 ! p t + 2 y L ) + u $  fp, 
where 

F=(1 -@)sin (p+(2+ecos 6)esin i) cos rp+eZcos 6, sin @= 
= (1 - e2) sin q+ e ( 2 +  e cos +)(cos 6 sin q+ sin eQ)+ 
+e2(sin9+ cos0 sint+,,)=sincp(t +ecos6)2+ 

+ 2e sin 0,(1 + e  cos 6 )  =-$(sin cp+2 G?). 
Hence 

Making use of (10.44), we write 

where 
F=[++I - ( t  + P ) c o s q ] ( ~ - e z ) +  ro  

+ [++ I )  (%+ 1) e sin 6 sin q+ (++ 1) eZsin26 - 
-(++ 1)e2sin*sinB0= 

= [++ 1 - (1 +E) cos q] (1 - et) + 
-I- ('+ 1) (++ 1) e (cos 6, -cos 6 cos (p) + 
+(++ t)e?(l-cos26)- Lo E+ 1 ) e2(cosrp-cos6cos6,)= 

=(++ l)(l--ez)+(++ t)($+t)ecos*,+ 

+ (+ + 1) e2(1- cos26) + ('+ 1) e2 cos 6 cos 6o - 
- cos cp [( 1 + :) (1  - e2)+ (+ + I )  (:+ 1) e cos++ 

+(:+ l)e2]=$+1+(++ I)(-$- 1)- 

-(;-- qs- l)+($- q:- 1)- 

- c o s ~ [ I + ~ + ( $ -  1)(1+$3]= 

l ) c o s q - ~ - ( $ -  1). 
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Substituting in (10.67), we find 

o r  finally 

From (10.43) we similarly have 

(&)/=cos cp -5 ($- - 1) /3vr0t - r  (1 +$) cos cp+ 

i-7 COS q+ -$( 1 -7) cos cp - 
--+(+-- 2r I ) + ~ ( ~ - -  1 P  1j(+ I)]= 

+2r0-p(x- r2 P l)]=a[-+($- ~ ) t +  

1 -e2 r2 

=a[-%($ -l)I+~cos~--j;-(cosecos6,+ e' 

+sint+sint+,)-+(+- 1)+Lcosftcostt,]. P 

Hence 
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TABLE 10.3 

iaro 

I 

I 
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From (10.44) we have 

(10.71) 

Substituting in (10.71), we find 

The other matrix elements of ( dcu:: ~ : ~ , ~ u ,  ) a re  determined analogously 

The final expressions f o r  the matrix elements a r e  listed in Table 10.3. 
In conclusion we should note that as the orbit eccentricity decreases, 

the partial derivatives listed in Tables 10.2 and 10.3 continuously approach 
the corresponding quantities defined by (2.17) and (2.18). 
limiting expressions, it suffices to put in Tables 10.2 and 10.3 

To obtain the 

10.11. PARTIAL DERIVATIVES OF THE CURRENT 
PARAMETERS WITH RESPECT TO THE INITIAL 
CONDITIONS OF MOTION IN THE RECTANGULAR 
FRAME (FOR t = const) 

(10.73) 

In various applied problems, the results a r e  often required, not in 
cylindrical coordinates, but preferably in some rectangular k a m e .  
transformation from cylindrical to rectangular coordinates need be 

The 

169 



ed for  one particular frame only, and any further transformation 
es can be realized with the aid of 

(10.74) 

where xyz and &t are  two rectangular f rames,  tk, vy, uz and u ~ ,  v,,q a r e  the 
corresponding velocity components, A the matrix of direction cosines for  
the two rectangular frames. 

may change upon transformation to rectangular coordinates. 
of the parametric set can always be ensured by making use of expressions 
(10.5) and (10.74). 

Note that the sets of current parameters and initial conditions of motion 
Invariance 

FIGURE 10.5. 
conditions of motion in  rectangular frames 
connected with the satellite's position in orbit. 

Current parameters and initial 

In the present section we shall operate in right-hand rectangular f rames 
p,,nob and pnc(Figure 10.5). The origin of the two frames is at the points 
Do and D, of the unperturbed orbit, respectively. The axes D,,Q~ and Dip 
point along the radii joining the center of attraction 0 with the points Do 
and D,, the axes D o h  and Din are  in the orbital plane, pointing in the direction 
of motion, and the axes DOSO and D& a r e  perpendicular to the orbital plane. 

Here the axes Doh and D&of the rectangular f rames a re  parallel to the 
axis 06 of the previously used cylindrical system rug. 

I to the matrix passing from the matrix 11 ar, uc. urn urn, go. wt, 

Therefore, on 

E ar. U, w,, vu, g, us 11 do. n. clo. un. 3. wE 

tal plane remain 
nts at right angles 

'PO' %* wn; & uf. 

(10.75) 
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The matrix /I.%Iis not altered, and i ts  elements a re  obtained from 

Table 10.2. 
The problem thus reduces to the calculation of the matrix elements of 

p 5 r  cos@- ul ) - f l ,  
n=r  sin@ -uJ, 

vp = vr cos (u - ul) - vu sin (u- ul), 
v, = v, sin (u - uJ+ vu cos (u - ul), , 

fit, which by analogy with (10.5) is written a s  dp. R. vv v, I dP, "0. Vfi. ut4 

= cos (u - ul), 2 = - r sin (u - u ~ ,  
, 

2- dP 

5 = sin (u - all, 2 = r cos (u - al), 
d n  d n  
dv, dv, -Os  

~ = o ,  d v  ~=-v,sin(n--nl)-vucos(u--ul), dr 
dv g= cos (u - ul), 9 = - sin (u - ul), 

%= sin(u -a1), 2% =cos (u - uJ. 

dv,  - dv. ='* 

dr 

-=-- 

= 0, %= vr cos (a -ul) - v, sin (u - ul), dr du 

dvr dv,  J 

To calculate the transformation matrices in the right-hand side of (10.76), 
we should first establish a relationship among the parameters of motion 
p, n. up, vn and t ,  u, ur, u, at  the current point. From Figure 10.5 we  have 

' 

1 0 0 0  
dp, n. vP. v, 0 r 0 0 1 dr. u. v,. v,,//= 0 -v ,  1 0 

0 v , o 1  

(10.77) 

' 

(10.78) 

(10.80) 

Ap = Ar, 
An = r Au, 

Avp = - VU AU + A v ~ ,  
Av, = V, AU + Av., 
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whence 
A r  = Ap, 
A u  = An, 1 

AV, = hVp+ +An, 

Av, = Av, -$An. 

Thus 

(10.81) 

11 a r e  determined similarly. dr,, uo. vrO. vuD II and I1 dp,, no. v N  vno 

Substituting these expressions in (10.76) and omitting the subscript t of the 

aP0, no. vp,. Vn, 

dr,, u0. vrO. The matrices 11 
derivatives, we find 

(10.82) 
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Inserting for the derivatives their expressions from Table 10.3, we 
dp. n, VP. v, . However, we should obtain a table of the matrix elements of 

f irst  simplify the expressions for  some of these derivatives. In particular, 
11 aP,, "0. "?"* V"* II 

"* 

($),= 2 f$ [ -2vr  + au0 sin ' p + ~ u , o  (++ I )  cos 9-t- 

+ r J  5 P-1 =- -2Les inf i+  
r~ p 11 f I ro 

+ ($)' sin (p+ e sineo (1  + 5) cos'p+e sineo($ - I)] = 

= E  P 1- 2e sin 6(1 + e  cos 6")+ (1 + e  cos6,)2sin 'p +- 
+ e  sin e0(2+ e cos eo) cos cp+ $sin Q0 cos 41 E= 

= 5 P [sin cp+ e ( -  2 sin*+ 2cos 6,sin cp+2 sin ~~coscp)+  

+ ~ ~ ( - 2  sin 6 cos e,) + cos26, sin cp+ 

+ sin 6, cos 6, cos cp + sin R, cos a)] = 
= %{sin P cp+ e2 1-2 (sin cpcos e,,+ cos cp sin 6,) cos *o+ 

+ cos2 eo sin cp+ sin 6,,cos &,cos cp+ 

= P [sin (p + e* (- sin cp cos2 6, - sin (p si n2 #,,)I = 
+ sin 6, (cos cp cos 6" - sin cp sin I?,)]) = 

= a ( l  - e21 sin 'p= sincp. 
P 

OU 
SI milarly , 

(%If = k, [(e),+ ud (%),- (&), I = 

= 7;; +z- { - 7 f + uuo( 1 +$) cos 'p-2%0 7 + 
P o r  ro ( P I (  PJ - 
-A [ (1 +$) r,u, - (1 + $)rv,,]} = 

"< f, { $ (1 + 5) cos cp - 2 f +  L ro (L ro - 1) - 

="["+($T (p+ l)cOs'p--2(p) Z P  r,+ 

r r av, 3v,o~uo 

+V,,C 1 - 1  +3v , ,v , , f -V f0  I + L  t+G'sincp 

ViG- 
r a  

-esin*,(l + + ) ( I  +$)sincp- 

-esin+,[(l +.L)cesint+- P P  ( 1 +- 3 P  .Lesine 0 1 1  = 

P? roa 

+(2r($-- 1)-(5+ I)(:+ l)esineosincp- 

- ($+ 1) 8 sin 6 sin eo+ ($+ 1) ~s in2*, ]  = [(t -e2)(1 + e  cos Q+ 

(10.83) 
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-t ( I  + 2 e cos eo+ e2cos2eo) ('+ I) cos cp - 
60)+(l +e cos @,,,Pecos So - 
e cos So) e sin sin cp - 
cos eo + sin 4. sin So) + 

+ (6 + 1) e2 cos s cos S, + (2 + e e2 sin2 eo] = 

= a P' [(I - ez)(++ I) coscp+(l -e2)(1 +ecose0)+ 

+(2ecos60+e2~os260)(2~ecos6)cosrp- 

- 2(1+ 2e cos @+e2 cosz6)(1 +e cos e,)+ 
+ (1 + 2e cos a,+ e2 ~ 0 ~ 2 6 ~ 0 )  e cos 6, - 
- (4+ 2e cos*+ 2e cos So+ e2 cos S cos @,)e sin So sin cpf 
+ (2 + e cos S) e2 cos tt. cos So+ 

+ ( 2 + e c o s ~ ~ ) e 2 s i n 2 ~ ~  I = ( I+L P) COST+ 

+ 5 1- 1 + e(cos S~ + 4 cos 6o cos 'P - 2 cos ~ ~ 0 - 4  cos s + 
+ cosS0 - 4 sin eo sin cp)+ez(- 1 + 2 cos2fb0 cos cp + 
+2cosS cos So cos cp -2cos2S - 4 cos 6 cos So+ 
+ 2 ~ 0 ~ ~ 6 ~ - 2 c 0 s 6  sin60sincp-~cos6~sin60sincp+ 

+ 2 cos 6. cos 6, + 2 sin2 So) + e3 (-cos 6, + 
+ cos260 cos S cos cp - 2 cos26 cos so+ c0s3tt.~+ 
+cosB.~os6~s inS~s in  c p + c o s 2 6 c o s ~ ~ + c o s ~ o s i n ~ 6 0 ) ~ =  

+ e2 [ - 1 + 2 cos 6, cos (cp+ So)+ 2 cos 6 cos (cp+ 60) - 
+ e3 [- cos 60+ cos 6 cos So cos (fp+ So) - 

= (1 +$) cos c p t  {- 1 + 4e [cos (cp+6,) - cos e] + 

- 2 cos2 .B. - 2 cos 6 cos eo+ 2 cos2S0+ 2 sinZ So]+ 

- ~ 0 3 6 ~ 0 s 6 ~ + ~ 0 ~ ~ 6 ~ + c o s 6 ,  sin26.,!} = 

=(I ++)cosp-$(l--e2)=(1 ++)coscp-$, (10.84) 

(10.85) 
(5) -F-%[ - ) ,  an 

= 5 [ -* (;- 1) t+  Duo$ cos9 - vue-+ 2r (i P - 1)- 

where an0 I -  r 8% t 
1 F"Z [(%)t+%o (g$- wro (%)J = 

- = fi ($? - $)I = [.uo$ cos cp - 

-- Vrurovm + (+ - 1) t - vr0 (1 + $) sin cp - w 

- wuo% (5- 1) -wro+  (1 +$) s i " c p - ! ~ ~ ~ G ]  P s 

=E P r  [(cy cos (p-2 ~ ( 4 -  ro 1)-e sine,(:+ 1) sincp- 

cos eo + e2 cos2 eo) cos cp - 

-j- e2 [cos So cos (cp+S0) - 2 cos 6 cos So - sin 6 sin SJ) = 2. % cosq(1- e?) ==% cosqt. P r  
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Substituting this expression in (10.85) and making use of (10.84), we find 

(10.86)  

To determine the derivative (g)l. we make use of equality ( 1 0 . 6 2 ) ,  

which gives 

Thus 
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TABLE 10.4 

a - d t +  I ' ": 

I 
I I 

sv 1 a [ + -  
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2 4  r, v: r 

t --%($-- 1) f+Trcos($ I -7 (T -  P 2ro P 1 ) 2 p ] =  

(10.91) 

In calculating the derivatives (%) (q,=po, vp,, vmo), we make use of 
dq, t 

relations (10.88) and the analogous equality 

Substituting in the last row in the right-hand side of (10.82), we find 

Hence it follows that the derivatives can be determined from the last row 
in Table 10.1. 

Substituting (in accordance with (10.79)) up and u,, for u, and u, in the 
ap, n. up. V, 

resulting expressions for the matrix elements of 

the final formulas listed in Table 10.4. 
matrix elements can be directly derived by the method proposed by 
V.I.Charnyi 1311. 

ap 1 , we obtain /I 0' 0' 9' uno t 

Note that the expressions for these 

10.12. THE CASE OF MOTION IN ELLIPTICAL ORBIT 

We see from Tables 10.1 -10.4 that in elliptical orbit, any of the 
derivatives of the current parameters with respect to the initial conditions 
of motion can be written in the general form 

(10.95) 
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where (-$):is the secular term which increases linearly with flight 

(3)"' is the periodic term with a period equal to the orbital 

time t ,  

period p of the body, 

a mixed term,  which is a product of some periodic 
rn ix (3) 

function and flight time t .  
As we have shown in Chapter2 for the particular case of circular orbits, 

secular perturbing terms a re  much more effective than the periodic t e r rm 
and, unlike the latter, they eventually cause substantial displacement of 
the satellite even if the initial perturbations a re  very small (see Table 2.1). 
The mixed perturbing terms may possess a similar property. 

We see from Table 10.2 that the matrix 1-1 is composed entirely of 

periodic terms. 
described by this matrix have been analyzed in adequate detail in Sec. 9 .6 .  

We shall therefore concentrate on the matrices 11 dro, uo, Dro, 

1 8: :: ~~~2 "::G ,and I 
We see from Tables 10.1, 10.3, 10.4 and from expressions (10.60) that the 
elements of these matrices contain secular and mixed terms.  

The periodic displacements from the orbital plane 

I1 Or, t. or, vu dr, t. or, vu IT, 11 dr,. to. vro. vllo ,,,I 

, which describe in-plane displacements. li ap. n, vP. wn 

dP0, "a. vpo. wno 

The matrices 

11 a r e  the simplest: they contain no mixed dr. f. ur. vu dr,  t. v,. v,, ! ar,, uo. vro, vllo !/*and ll ar,. to. vro. VUG 

terms,  while secular t e rms  enter the derivatives ($)v, ( & ) q ,  and (L) 
dv,, 

only. 
motion slightly distort the original orbit Z into a perturbed orbit Z' 
(Figure 10.6). Therefore, if  the unperturbed and the perturbed points 

This is so  because small variations in the initial conditions of 

FIGURE 10.6. Relationship between the variations 
in current parameters of motion for constant t ime 
and consfant distance from the mitial position. 

D1 and 0; a re  on one radius through the center of attraction 0 (i. e., cp=const), 
perturbations in most of the parameters at the current point remain small, 
varying periodically in time. However, perturbation of the orbital period 
introduces a secular increment in the time of arrival at the perturbed 
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point 0;. The distance between the perturbed point D; with rp=const and the 
perturbed point D1 with t=const increases monotonically. 
responsible for  the secular and the mix$d components of the variations in 
the parameters of motion at  the point D1. 

Many of the mixed perturbations which obtain for t=const are  in fact 
long-periodic effe 

it becomes equal to 2nn ( n  an arbitrary integer), the variations in most of 
the parameters of motion for f=const resume the initial small values, which 
a re  equal to the corresponding variations for cp=const. The only exception 
is the variation ( A u ) ~ ,  which is a pure secular, monotonically growing 
perturbation. 
substantial even if the initial perturbations a re  arbitrarily small. 
linear relations (10.1) among the perturbations in the current parameters 
and the initial conditions of motion a re  therefore rendered meaningless. 
In other words, in elliptical orbit, relations (10.1) with s = t  apply only 
during some limited period. 
under small initial perturbations the points D1 and 0; a re  always close to 
each other. 
point is determined by varying relation (10.26), and the variations of all the 
parameters in the integrand are  invariably small. Therefore, although 
the perturbation (At), increases indefinitely, the relative error of its 
determination from the linear relations remains small, provided the 
initial perturbations a re  fairly small. 

This in turn is 

Indeed, it follows from the preceding that the angle 
., ( A u ) ~  between the r OD1 and OD; monotonically increases in time. When 

Eventually, the distance between the points Di and 0: becomes 
The 

If s = q ,  this time restriction is lifted, since 

The perturbation (At)rp in the time of arrival at the current 

dr. t. vr. v,, It follows from the preceding that the matrices 1 dro, uo, VrO, vyo io and 
ar. U, vr, vu ]i dr,, ua, ufl, vu0 

1 :;;,2uo ]1, are  more convenient than the matrices and 

fo r  the analysis of the effect of small initial perturbations. 

Moreover, a s  we see from Tables 10.1, 10.3, 10.4 and relations (10.60), the 
expressions for most of the entries in the first pair of matrices a re  simpler. 
A s  regards the matrices for t=const, they should be used in determining 
the variations in parameters which a re  definitely known to be related to 
a certain epoch (e. g., in treatment and analysis of orbital measurements). 

In analyzing the influence of initial perturbations on motion in elliptical 
orbit, we often consider the contribution from secular te rms  only, a s  
these a re  decisive. In such cases i t  is convenient to replace the previous 
set of initial conditions ro, h, Ltm, vWa with the set ro, %, a, BO, where a and 80 
are  respectively the semimajor axis of the orbit and the inclination of the 
initial velocity vector to the local horizon: 

(10.96) 

Making use of (10.5), we obtain an expression for the corresponding 
matrix: 
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ar,. u,. vr0. 
To calculate the matrix elements of 1 arO, uo, a, 

relations 

v; = +- 
we make use of the 

v,, =I v, sin e,, Vd = vu cos e,, 
0 0 '  

where v,,= v w i  is the magnitude of the initial velocity vector. Hence 

Fin ally 

(10.98) 

Substituting this matrix in the right-hand side of (10.97) and applying 
Table 10.1, we see that the secular t e rms  appear in none of the matrix 

elements of [ d ~ O ; O ~ u o ~ ~ ,  IL, with the exception of the derivative ($)q. 

The secular component of this derivative is calculated from 

If the orbital period P from (5.36), and not the semimajor axis a,  is 
introduced a s  the independent initial condition, it follows from (10.99) that 

(10.100) 

180 



10.13. INVERSION O F  MATRICES 

In some problems, we seek the variations Aqj in the initial conditions 
from known small  disturbances ( A p t ) ,  in the current parameters of motion. 

Left-multiplying equality (10.2) by the inverse of the matrix 1 
we find 

dql* 42. . . . I  4s II 3' dpls P Z .  .... PS 

where 

(10.101) 

( 10.102) 

The problem thus reduces to the inversion of a matrix whose elements a re  
partial derivatives of the current parameters with respect to the initial 
conditions. 

If the sets  of current parameters and initial conditions a r e  symmetric, 
i. e. ,  if they are  defined in one system of coordinates, for the same initial 
and current positions, a s  the case is for the matrices 

the problem can be solved without going into the cumbersome calculation 
of inverse matrices. 
equations of motion (4.3) can be solved not only for positive, but also for 
negative time. All the previous relations remain in force (since it is only 
the coordinates of the body and their second derivatives which explicitly 
enter equations (4 .3);  these equations do not contain the time and any of the 
odd derivatives of position). If negative time is introduced, the current 
parameters and the initial conditions of motion a r e  interchanged. 
it follows that the expressions for the matrix elements of the inverse 
(i. e., for the partial derivatives of the initial conditions with respect to 
the current parameters of motion) can be obtained from the expressions 
for the elements of the original matrix on substitution of - t for t ,  - 9  for rp, 
qJ for  p i ,  p i  for 9,. 

It suffices to make use of the fact that the initial 

Hence 

In other words, 

(10.103) 

F o r  example, from Table 10.4 we have 

Charnyi 1311 has shown that the calculation of the inverse is considerably 
simplified if the problems a r e  solved in rectangular coordinates for constant 
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time. 
They a r e  derived from the entries in the original matrix by a sequence of 
transpositions and permutations, 
columns in the matrices,  we write 

In this case,  the matrix elements of the inverse need not be computed. 

Transposing some of the rows and the 

where 

Then 

(10.105) 

where the asterisk ::- denotes the transposed matrix. 
Equalities (10.105) give the numerical values of the matrix elements of 

dp. n. %. vu. 9%. vc 
and vice versa. 
basis of Tables 10.2, 10.4 and equality (10.103). 

a r e  known, 

The validity of relations (10.105) is easily proved on the 
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Chapter 11 

THE INFLUENCE OF PERTURBING ACCELERATIONS 
ON ORBITAL ELEMENTS 

11.1. STATEMENT OF THE PROBLEM 
AND FUNDAMENTAL RELATIONS 

In previous chapters we have considered motion in a central gravitational 
field, defined by (1.2).  
is the main driving force on a satellite which moves close to the Earth (or 
to any other primary), so  that the orbital parameters computed for the 
ideal central force describe the main features of real  motion of artificial 
satellites and other space vehicles. However, a more detailed analysis 
cannot ignore the contribution from the so-called p e r t u r b i n  g f o r c e s , 
the main ones being: 

As  we have observed in Sec. 4.1, central gravity 

(i) noncentral components of the Earth 's  gravity which depart (in 
magnitude and direction) from the central force defined in (1.2);  

(ii) a i r  drag and other aerodynamic forces; 
(iii) the pull of the Sun, the Moon, and the planets; 
(iv) radiation pressure,  etc. 

In the sphere of the Earth 's  gravitational pull (and outside the dense 
atmosphere), these perturbing forces a re  small  in comparison with the 
main central gravity component, but they nevertheless have a substantial 
influence on the orbital motion of satellites. The most significant effects 
include the so-called secular perturbations of the orbit, which eventually 
cause a substantial change in the nature of motion (even if the perturbing 
forces a re  very small; see Sec. 2.3) .  

The present chapter deals with the effect of various perturbing forces 
on the orbital motion. 
disturbing forces assuming, in general, that the satellite experiences 
two accelerations: the gravitational acceleration g defined by (4.2) and some 
perturbing acceleration J. The vector equation of motion (4.3) is then 
written in the form 

In our analysis we ignore the exact nature of these 

(11.1) 

The contribution from each particular perturbing factor (producing a 
definite perturbing acceleration j )  is considered in the chapters that follow. 

Equations ( l l . l) ,  in general, are  not integrable in finite form. They 
a re  mostly solved by numerical integration. Numerical techniques, however, 
though highly useful for exact computations, a r e  much too complicated to 
satisfy the requirements of qualitative analysis. Various approximate 
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methods of solution a re  much more convenient for qualitative investigation 
of (11.1). We sha l lu se  here the m e t h o d  of  o s c u l a t i n g  e l e m e n t s ,  
which essentially amounts to the following. 

(11.1) is fully described by the dependence of the vectors r and w=; on 
flight time t .  At any point D of the orbit, at some epoch t = h ,  we can 
always construct the so-called osculating orbit which is described by 
the vectors p( t )  and p ( t )  defined a s  follows: 

In practice, an orbit which corresponds to some solution of equation 

(11.2) 
P (4) = r (41, 
i (6) = i (ti), 
,=.E P* 

where p = - ] p { .  

differs from point to point. 
unperturbed motion (4.3) and it is therefore elliptical, hyperbolic, parabolic, 
o r  vertical (see Chapter 4). 
orbit and both orbits have the same flight velocity u = I ;I .  
motion, however, the actual and the osculating orbits diverge. 
perturbing acceleration j is small in comparison with the Newtonian 

acceleration g = E  r ,  this divergence will be insignificant in a certain 

neighborhood of the point D. The osculating orbit can therefore be used a s  
a characteristic of actual motion near the point D. 
actual and the osculating orbits coincide, is the p o i n  t o f o s c u 1 a t  i o  n , 
and the corresponding time t=t,is the i n s t a n t  o f  o s c u l a t i o n .  

An osculating orbit can be constructed for each point of the real  orbit, 
considered a s  the point of osculation. 
these osculating orbits is described by six elements qi( t )  (i= 1, 2 ,  3 , .  . . , 6). 
Each point of the real  orbit is thus in correspondence with a set  of elements 
qi which describe some osculating orbit; these elements a re  the o s c u  1 a t  i ng  
e l e  m e n t  s of the real  orbit being considered. The elements qi are  constant 
along the corresponding osculating orbit, but they change if the instant of 
osculation is changed. 
dependence qi=qr(f), where t is the instant of osculation. It follows from 
Sec. 5.4 that the magnitudes of the osculating elements at some instant 
#=ti a r e  uniquely determined by the components of the vectors p and Q at 
that time. Hence, making use of (11.2), we find that qi(t1) uniquely define 
the vectors r (4) and i (f,), 
osculating elements a s  a function of flight time, q i = q i ( t ) ,  is thus equivalent 
to the determination of the functions r ( t )  and i ( t )  which define the realorbit .  

The set  of osculating elements 9i(P) (i= 1, 2,. . , 6) can therefore be 
applied a s  a set of variables uniquely defining an orbit in an arbi’,rary 
force field. In the equations of motion (11.1) we may change over from 
X ,  g, z, vx, vY, vt (i. e., f rom the components of the vectors r and  w=r)  
to 9*. The equations then take the form 

These conditions clearly define a unique orbit at each point D, which 
The osculating orbit satisfies the equations of 

At the particular point D ,  it touches the actual 
In the course of 

If the 

r s  

This point, where the 

According to Sec. 5.4, each of 

In other words, for the real  orbit we have the 

In other words, the determination of the 

(11.3) 
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where s is an independent variable (say, the flight time t ) ,  and j , ,  j z ,  j 3  a re  
the projections of the perturbing acceleration j on the axes of some (as yet 
arbitrary) system of coordinates. 

The set (11.3) a r e  the e q u a t i o n s  of m o t i o n  i n  o s c u l a t i n g  
e 1 e m e  n t s . They a r e  more convenient than the starting equations (1 1.1) 
for qualitative analysis of small perturbing accelerations on account of the 
following features. 

(1) Fo r  small  perturbing accelerations ( I J I  < g ) ,  the elements & ( t )  vary 
slowly along the orbit (since for j = O ,  qi=const), so that an approximate 
solution of (11.3) can be readily obtained by the method of the small  
parameter. 

an obvious kinematic meaning, which facilitates the qualitative analysis. 

in osculating elements. 
be considered in subsequent chapters in connection with various particular 
perturbing accelerations j .  

(2)  The osculating elements q, obtained from the solution of (11.3) have 

The principal problem of this chapter is to derive the equations of motion 
The approximate solution of these equations will 

11.2. DERIVATIVES FOR FUNCTIONS 
OF POSITION AND VELOCITY 

Before proceeding with the actual derivation of the equations of motion 
in osculating elements, let us  consider some function of position and velocity 

where x ,  y, z are  the coordinates of the satellite and v,, vy, vz i ts  velocity 
components. 

Let E, 11, c, vi, vq, vi be the coordinates and the velocity components in 
osculating orbit. From (11.3) we see that at the instant of osculation 

F ( x ,  Y, 2, vx, vy, vz) = F ( E ,  q, L WB. 2111. Vg). 

In any orbit, F is a function of flight time t .  Let be the derivative 

of F with respect to t for motion in real  orbit, and ($)o the same derivative 

for motion in osculating orbit. 

(11.4) 

dF 

Then, from (11.1) and (11.2), we write 

where gx, g,, gr, jz ,  j,,, jz  a r e  the projections of the vectors and J.  
From (11.2) we see that at the instant of osculation 

dF - dP dF" 
t - (do + df ' (11.5) 
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where 

(11 .6 )  

d F  d F  We call = t h e  t o t a l  d e r i v a t i v e ,  and =the  s p e c i a l  d e r i v a t i v e  
of the function F. 

In particular, if F is some element 4 of the osculating orbit (or  an 
integration constant of the equations OP unperturbed motion), we have for 
the osculating orbit 

Hence, for the real  orbit 

(11.7) 

(11.8) 

This relation will be widely used in what follows in the derivation of the 
equations of motion in osculating elements. Let us consider it in some 
detail. Note that during a fairly short period At, the effect produced by 
the perturbing acceleration j can be replaced, to f i rs t  approximation, 
by an impulsive increment in the velocity vector, 

A v  = j A t .  (11.9) 

The orbital elements q=q (r, V )  then change, to first  approximation, by 
an amount 

Hence, passing to the limit a s  A t - 0 ,  we recover (11.8). 
Relation (11.8) is thus easily derived a s  the limit when the continuous 

perturbing acceleration is replaced with an infinity of infinitesimal impulsive 
increments of the velocity vector. 

d Q  di d; 
11.3. T H E  DERIVATIVES 7 9 AND 

In deriving the expressions for the derivatives of various osculating 

The origin of this system is at  the center 
elements, we shall invariably refer to the system of cylindrical coordinates 
r, u, z depicted in Figure 2.1. 
of attraction 0, the plane ru coincides with the osculating orbital plane 
(for the instant of osculation being considered), the angles u a r e  reckoned 
from the line through the ascending node of the osculating orbit, and the 
axis z points at right angles to the osculating orbital plane. Let S, T, W 
be the projections of the perturbing acceleration in the directions r ,  u ,z,  
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respectively. Then (11.6) and (11.8) take the form 

(11.11) l e ,  

- 3  

where vrr vu, and u,, a re  the corresponding project:ons of the velocity vector. 
We first derive the expressions for the deriv 

and i ,  which define the orientation of the orbital 
perturbations $ and T cannot a 
only consider the contribution from the perturbing acceleration component W, 
Proceeding from the remarks at the end of the previous section, we shall 
substitute for the continuous perturbing acceleration an infinity of 
infinitesimal impulsive increments 

es of the elements 9 

r the orientation of this plane, we need 

A U ~ G  WAI. 

Making use of (9.51), we see that this velocity increment rotates the 
orbital plane around an axis through the gravitational center 0 and the 
point of osculation D ,  by an angle 

(1wcAt. W ( 1 1.12) 

Hence, applying (5.11) and (9 .53) ,  we find f a r  the corresponding 
variations of 4, i ,  and u 

Note that here  AQ and Ai a re  the total variations of the corresponding 
orbital elements, while dFf is a special variation, neglecting the change in 
the angle u in the course of motion in osculating orbit. 

Passing in (11.13) to the limit for At+O,  we find 

( 11.14) 

(11.15) 

To find the derivatives o G ,  we make use of relations (4.181, 
(4.21), (4.22), and (4.23), remeWi,ering that uoos B S I U ~  and usin O=vr, 
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Thus, 
r?.', 

p=, ,  

Differentiating and applying (4.19), (5.11), (5.13), we find 

(11.16) 

( 1 1.17) 

Substituting in ( 11.1 l),  we have 

* = T G 2 r ,  d t  

d o  du d6  
11.5. THE DERIVATIVES x- ;ii AND 

To find the derivative of the argument of the pericenter o ,  we make use 
of expression (5.49) : 

0=U-@.  (11.19) 

Taking the special derivatives of the left- and the right-hand sides and 

seeing that -$=&(since w is one of the orbital elements), we write 

do d z  d$ 
dt dt d t  ' 
-=--- 

To obtain the derivative 4, we w r i t e  (4.19) in the form 

( 1 1.20) 

.f=l+ecost+ ( 1 1.2 1) 

and take the special derivatives of the left- and the right-hand sides of this 
equality. Seeing that 
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we have 
d6  --_ j X --esin+;-ii-+cos6$. 

Hence, applying (11.18), we write 

d 8  f i e  sin + =S sin + cos + + T( [(I ++)cos+ + e$] cos+ -2 1. 
Making use of (4.19), we write for the expression in braces 

[( 1 + $) cos 6 + e $1 cos + - 2= 

= ( I  +$) COS2 6 + -.!F!e- 1 + e  cos 6 - 2 

= (1 +$) cos2it - ($+ 1) = - (1 ++) sin?+. 

Then 

-_ di -2. e fi [s cos+- T(1+$) sin 81. (11.22) 

Substituting (11.15) and (11.22) in (11.20), we obtain the final expression 
do for the derivative =: 

-- do - e{ [- S cos++ T (I +s sin $1 - W$ ctg i sin u 1, ( 11.23) dt 

From (11.15) and (1 1.22), we obtain expressions for the total derivatives 
dtf -and dt  

motion in osculating orbit. 
orbit w=const, we have from (5.11) and (5.12) 

g. Let us  first determine the derivatives of these elements for 

Applying (1 1.19) and seeing that in osculating 

Hence, making use of (11.5), (11.15), and (11.22), we have 

du d& Thus, with perturbing accelerations, ;ii- f?. # F. This is so because 

the displacement of the point of osculation produces simultaneous 
displacement of the point of origin from which the angles u and 6 a re  
reckoned (i. e., the node and the pericenter of the osculating orbit both shift). 
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dP 11.0. THE DERIVATIVES s, $PI AND dt 

To find the derivative of the semimajor axis a of the orbit, we make use mi 

of relation (5,15), which can be written a s  

1 2 U21t.2 
i-r=-.-..U* 
Q f  P 

Differentiating and applying (5.2), (5.11), and (5.13), we find 

(11.27) 

Hence putting q= a in ( 11.1 1) , we have 

To find the change in the osculating orbital period P and in the osculating 
pericenter distance rp(i. e., in the elements P and rpas computed for 
osculating orbit), we differentiate the second expression in ( 5 . 3 )  and relation 
(9.36). Thus 

(11.29) *p=e(l-e)--a--, dn de -- dP 3 P da 
d l  dt dl dt T y x '  

Inserting ( 11.18) and ( 11.28), w e  find 

(11.31) 

Perturbing accelerations thus cause continuous variation of the osculating 
orbital period P and the osculating pericenter distance rp in the course of 
orbital motion. Therefore, strictly speaking, these two quantities canhot 
be assumed as  characteristic of any particular circuit of revolution. 
more exact definition is required: the orbital period may be defined a s  the 
n o d i c a l  p e r i o d  of  r e v o l u t i o n  Pa(the time of revolut?onfrom 
ascending node to ascending node; see Sec. 13.6), and the pericenter 
distance should be taken a s  the minimum (for the particular circuit) distance 
rmin from the center of attraction, 

height hmin of the satellite above the Earth 's  surface (on account of the Earth 's  
flattening, the parameters rmin and hmin in  general correspond to different 
points of the orbit). With small perturbing accelerations, the osculating 
values of P and rp are cloae to P, and r,m. Secular perturbations in these 
osculating parameters a re  therefore fairly representative of the secular 
perturbations in P, and rmm. 

A 

The parameter is often conveniently replaced with the minimum 
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11.7, DIFFERENTIAL EQUATIONS OF 
MQTION IN QSCULATXNG ELEMENTS 

We first introduce s somewhat generalized definition of osculating orbital 
elements. By an oscu1.ating orbital element we mean not only an element of 
the osculating orbit, but a n y  p a r a m e t e r  c h a r a c t e r i z i n g  m o t i o n  
i n  o s c u 1 a t  i n  g o r b i t  , 
in  osculating orbit, and it i s  its value at the point 
adopted a s  the osculating element. Under this de 
also be regarded a s  osculating elements of the re 
speaking they a re  not elements of the osculating orbit, along which they 
a re  variable). 

A c o m p l e t e  s e t  of  o s c u l a t i n g  e l e m e n t s  ~ ( t )  ( i = l ,  2 , . . , ,  6) 
is a set of parameters unambiguously defining the orbit, e. g., the vectors 
t ( f )  and o ( t ) .  If some complete set of elements q , ( f )  ( i =  1, 2 , .  . . , 6) i s  
known, all other Osculating orbital elements can be easily determined. 
Therefore, any set  of differential equations which define so 
set  of osculating elements may be regarded as the different 
motion in osculating elements. It would be easiest to write the differential 
equations for p ( f ) ,  e ( f ) ,  w ( t ) ,  a(t), i ( f )  and @(t ) ,  
(7.10) it follows that these parameters uniquely define any point of the 
real  orbit (irrespective of whether the osculating orbit i s  elliptical, 
hyperbolic or parabsllc). 

the following set of equations in these osculating elements: 

.a 

~. This parameter may vary in the course of motion 

rbit (although strictly 

From (5,3?), (6.41), and 

Making use of relations (11.14), (11.18), ( l l .23) ,  and (11.26), we write 

where 

(11.32) 

(1 1.33) 

In deriving equations (11.32), we never actually used the assumption of 
small perturbing accelerations S, T, W. However, if the accelerations 
S, T, W are  comparable in  magnitude with the Newtonian acceleratian 

g -#, the elements,p, e, O, Q, i vary rapidly along the orbit, and equations 

(1 1.32) therefore lode their advantage in comparison with the starting set 
( l l . l ) ,  which i s  much simpler. 
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11.8. 
OF MOTION IN OSCULATING ELEMENTS BY THE 
METHOD OF SUCCESSIVE APPROXIMATIONS 

SOLUTION OF THE DIFFERENTIAL EQUATIONS 

$ = TF2r. 

= F {S sin++ T [( 1 + 5) cos ~ + e  $11, 
d"+S - cos I? + ~ f ( t + + ) s i n t + -  
d6 

- w-Lctgisinu], P , (11.34) 

(11.35) 

We shall only consider the cases when the perturbing accelerations 
S, T ,  W are  functions of the vectors r, w and do not depend explicitly on 
the time t. Then only five equations in the set  (11.34) must be solved 
simultaneously. The sixth equation can be subsequently applied to 
determine the flight time f by quadrature. 

the_s$m$ta;peous solution of five equations in (11.34), we shall wr i t e  
$ e, 0, a, i for the initial values of the osculating elements at the point 
@=@a. The symbols A p ( 6 ) .  Ae(@), Am(@), A q ( 6 ) .  A i ( 6 )  stand for the 
perturbations of these elements in the course of orbital motion. The 
osculating elements of the real orbit a r e  thus written in the form 

In our presentation of the method of successive approximations for 

I 

Making use of (11.36) and seeing that jj, 6, o, a, 2 are constant, we write 
for  the first five equhtions in (11.34) 

(Ap) = TF2r. di3 
d 

d I 

de (Ae) = F { S sin6+T [( 1 4 $) cos@+e $I}, 
(Ao) = F [- S % + TT (1 +$) sin 6 - 

- W-Lctgisinu P I , 
d f s1nu 

p sini =(dQ) = WF --, 

d ( A i )  = WF L cos IC, 
dQ P 

{ 1 1.37) 
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which is solved with the aid of (11.33), (11,35), and (11.36). 
Let us  consider the integration of these equations in an interval of 

+-values where the perturbations Ap, Ae, Am, A Q ,  an? A i  remain small. Then, 
to first approximation, we may set p = p ,  e=;, o=o, Q = a ,  i= I  in the right- 
hand sides of (11.37). 
and the perturbations Ap, Ae, Am, A Q ,  and Ai a re  found from quadratures. 
Substituting these perturbations in (11.36), we find the osculating orbital 
elements to second approximation, and so on, until the desired accuracy 
is attained. 

In our qualitative analysis of the various particular perturbations, we 
S 

Each of the five equations is integrated separately, 

shall stop after the f i rs t  approximation. We shall also take the ratios eg 
and =to be small. T Equality (11.35) is then reduced to the approximate 

r’ 
P 

F Z - .  (11.38) 

As we have shown in Chapter 3, small perturbations have a substantial 
influence on the motion of artificial satellites only if they cause growing, 
secular disturbances of the orbital elements. The secular effects can be 
characterized by the change in the orbital elements during one period, 
6 p ,  de, 60, 6 9 ,  6 i .  We write the following approximate expressions for 
these perturbations: 

0 

W r  
6a =$ [-g- s cos6 +s T e 1 (1 +$) sin 6. - --ctg g P  i sin u 

2n 

For simplicity, we have omitted the tilde - in the notations of the initial 
osculating (i. e., unperturbed) orbit. 

In deriving (1 1.39), the ratios - S T  W - and - w e r e  assumed to be small. 
eg ’ eg g 

Hence it follows that for nearly circular orbits (e + 0) these expressions 
may become meaningless even if the perturbing accelerations a re  very 
small. In the analysis of perturbations in circular and nearly circular 
orbits, we shall therefore resor t  to the methods of Chapter 3. 
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Chapter 12 

TNl3 GRAVITATIONAL FIELD OF THE EARTH 

12.1. STATEMENT OF THE PROBLEM 

in the previous chapters we assumed that the vector g of the Earth's 
gravitational acceleration always pointed to the Earth's center, and that 
its magnitude was a s  defined by (1 '2). 

is true i f  the entire mass  of the Earth is concentrated at one point, namely 
its center. Then, 

In accordance with Newton's law of universal gravitation, this assumption 

(12.1) 

where M is the Earth 's  mass, and f the so-called gravitational constant. 

celestial bodies, whose distance from the Earth is much greater  than the 
Earth's radius, However, even the Moon is not fa r  enough for  this 
assumption to apply: the finite mass  distribution of the Earth must be 
introduced in the exact lunar theory. 
significant for the analysis of motion of close satellites, which move in 
the immediate Earth environment, 

structures is the subject of a separate scientific discipline - the theory 
of potential. Various theoretical problems that can be applied to the 
determination of the force of gravity a re  the province of gravimetry. It 
is closely related with the theory of the Earth's figure, which studies 
the shape and the size of our planet. The present chapter describes 
the principal results of these disciplines in so fa r  a s  they a re  needed in 
the analysis of motion of artificial Earth satellites. 
presented without derivation. The reader is referred to specialized 
literature for  a more detailed and rigorous treatment of these topics 
14, 8, 21, 271. 

The assumption of point mass  is justified in the motion of remote 

This factor is there:ore much more 

The gravitational pull of bodies of various sizes, shapes, and internal 

Some propositions a re  

12.2. GRAVLTATIONAL POTENTIAL 

The gravitational acceleration of a body may be treated a s  the sum total 
of gravitational accelerations of the elementary particles comprising the 
body. 
by Newton's law. 

The attraction of each of these elementary particles is defined 
Let dg be the vector of gravitational acceleration of 
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some elementary particle. 
of this vector on the axes of some rectangular frame Oxyz a r e  

From (4.1) and (12.1) we see that the projections 

where dm is the mass of the attracting elementary particle, p and r a re  
respectively the vectors which define the position of the attracting particle 
and the test particle for which the gravitational acceleration g is being 
calculated, E, q. 5 and x,  y,z a re  the projections of these vectors on the 
rectangular axes. 

We introduce a function 

From the previous equalities we have 

o r  
dg =grad (dU). 

To find the gravitational acceleration due to the entire body, the 
elementary accelerations dg must be integrated. 
acceleration g is given by 

The total gravitational 

g =  grad U, 

where 

(12.2) 

(12.3) 

Here the integral is taken over the entire volume occupied by the attracting 
body. 

The function U = U ( x , y , z ) i s  the g r a v i t a t i o n a l  p o t e n t i a l  (or the 
p o t e n t i a l  f u n c t i o n  of  g r a v i t y )  of the body in question. By 
definition, 

U+O for Jrl-+a?. (12.4) 

Let Qns be the energy expended as  a test body of unit mass  is moved 
against the gravitational pull from point A to some other point B. 
(12.2) we have 

From 
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where dS  is the vector of elementary displacement of the test  body moving 
from point A to point B, dU the change in the function U corresponding to 
the displacement dS. 

the energy QaB - U(A). 
energy which is acquired by a body of unit mass  a s  it moves from a given 
field point to infinity (i. e. ,  escaping from the sphere of gravitational pull 
of the primary). 

Now, making use of (12.4), we see that as the point B recedes to infinity, 
In other words, the function U ( r ,  y, z )  is the potential 

12.3.  EARTH'S GRAVITATION AS 
A FUNCTION OF EARTH'S FIGURE 

From (12.2) it follows that the gravitational field of any body can be 
determined i f  i t s  gravitational potential U ( X , ~ , Z )  is known at any point 
external to the body. 
This approach, however, necessitates advance knowledge of the mass 
distribution in the body interior, and is therefore hardly practicable at 
present. The problem is considerably simplified by the following 
fundamental theorem of the potential theory: to f i nd  the gravitational 
potential in the entire external space around an attracting body which rotates 
with constant angular velocity, it suffices to know the total mass of the body, 
the angular velocity of i ts  rotation, and the shape of i ts  surface. The body 
surface here i s  the surface of some hypothetical ocean which covers the 
body completely. 

The potential function can be computed from (12 .3) .  

This surface can be shown to satisfy the equality 

U ( x ,  Y, z )+UI(x ,  Y, z)=consf, 

where U i ( x ,  y,z) is the potential of the centrifugal force, defined as 

U, =- 2 '  

where 8 is the angular velocity of rotation of the body, Ti the distance from 
the test point to the spin axis. 

It follows from this theorem that the mass distribution in the Earth 's  
interior is irrelevant for the calculation of the Earth 's  gravitational 
potential: it suffices to establish the shape of the Earth's surface, the 
so-called Earth's figure. In particular, if  the Earth 's  spin is neglected, 
and the Earth is assumed to be a regular sphere,  the gravitational potential 
is easily found from 

(12.5) 

where r is the distance of the test point from the Earth's center. 

Earth 's  center, defined by (1.2). In other words,  the gravitational pull 
of a spherical nonspinning Earth is the same a s  the pull of the corresponding 
point mass.  The Earth's surface is actually close to a sphere, and the 
rotational effects a r e  comparatively small (the centrifugal acceleration 
on the Earth's surface is small  in comparison with the gravitational 

This potential corresponds to a gravitational acceleration through the 
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acceleration). 
satellites we may therefore conceive of the Earth's mass  a s  concentrated 
at the Earth's center (although the distance from the artificial satellite to 
the Earth's surface is often much less than the Earth's radius). 
assumption, however, is inadmissible in  more exact investigations, where 
the Earth's nonspherical figure and its spin must be taken into consideration. 

In the approximate analysis of motion of artificial Earth 

This 

12.4. THE GEOCENTRIC REFERENCE ELLIPSOID AND 
THE NORMAL GRAVITATIONAL FIELD OF THE EARTH 

The Earth's figure is a fairly complex surface, which is conventionally 
called a g e o i d  . 
yet, and its refinement is one of the aims of gravimetry and the theory 
of Earth's figure. 
fair accuracy by an oblate ellipsoid of revolution, whose center of mass  
is at the Earth's center and whose minor axis points along the Earth 's  
spin axis. This ellipsoid provides the best approximation to the surface 
of the real geoid, and it is called the g e o c e n t r i c  r e f e r e n c e  
e l l i p s o  i d .  

The exact shape of the geoid has not been determined 

In some cases, however, the geoid can be replaced with 

FIGURE 12.1. Componenu of the normal 
gravitational acceleration. 

As we have previously observed, the gravitational field is completely 
defined by the Earth's figure (for given mass and spin rate of the Earth). 
In gravimetry, the gravitational field of the reference ellipsoid is called 
the no  r m  a 1  f i e  I d ,  whereas the deviation of the real  geoid field from 
normal is called the f i e l d  o f  g r a v i t y  a n o m a l i e s ,  o r  in short the 
a n o m a l o u s  f i e l d .  

The geocentric reference ellipsoid is a surface of revolution with hn 
axis along the Earth's spin axis, so that the normal gravitational field is 
symmetric about the Earth's axis. 
field is always in the plane of a meridian, i. e., in a plane through the test 
point D and the Earth 's  spin axis 
described by two components: the radial component g, (i. e., the projection 

The acceleration vector g of the normal 

(Figure 12.1). The vector g is thus 
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on the radius-vector joining the test point D with the 
the meridional component g,(in the plane of the mer  
to gr). 
respectively. 

The normal potential function, i. e.,  the attraction to the reference 
ellipsoid, is generally obtained from a series expansion in spherical 
functions of geocentric latitude B (the angle between the radius-vector 
and the equatorial plane). Only the first three te rms  in this expansion 
are  generally retained: 

th's center) and 
, at right angles 

Positive gl and g,,, point to the Earth's center and to the north pole, 

(12.6) 

where aW, am, al0 are  constants, and Pm(sin B) andPk0(sin B)are the correspond- 
ing Legendre polynomials {the z o n a 1 h a r m o n i c s of the potential function). 

(12.7) 

From (12.6) we see that the normal gravitational potential is a function 
of the distance r and the geocentric latitude 5, but it is independent of 
the longitude L (the angle between the plane of the meridian through the 
tes t  point D and the plane of some initial meridian). This property is 
attributable to the reference ellipsoid being a surface of revolution. 

The constants am, azo, and ah0 can be determined from 

3 15 
a , = / ~ = y  e a2 e (  1 - a + p m - - m a +  14 . . .), 1 

(12.8) 

where a, and be are  the semimajor and the semiminor axes of the general 
terrestr ia l  geoid (i. e., the equatorial and the polar semidiameters), a the 
flattening of the ellipsoid, 52 the angular velocity of Earth's spin, 
ye gravitational acceleration at the equator of the geocentric reference 
ellipsoid (the so-called e q u a t o r i a l  c o n s t a n t  of  g r a v i t a t i o n a l  
a c c e 1 e r a t  i o  n )  , M the Earth's mass ,  f gravitational constant. 

We substitute for the constants ow, urn, ab,, 

(12.9) 

From (12.6) and (12.7) we then have 

Thus, the normal gravitational potential of the Earth can be found if  
the four quantities a,, a, ye and Q a re  known. The spin rate  62 is known 
with a very high accuracy from astronomical measurements. The 
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determination of the constants a., a, and ye on the other hand, is one of the 
fundamental problems of gravimetry and the theory of Earth 's  figure. We 
shall use the following approximate values of these constants 1331: 

-* 
ab= 6378.16km 
a = 1 : 298.2, 
ye=9.78031 m/sec2, 
8=7.29211.104sec-1. 

Then, from (12.8) and (12.9), 

p=3.98602 109 km3/sec! 
e=2.634. 101O km5/sec2, 
r.=6.773 1OI6 km7/sec2. 

(12.11) 

(12.12) 

Making use of (12.2), (12.6), (12.7), and (12.9), we find expressions for 
the radial and the meridional components of the normal gravitational 
acceleration: 

(12.13) 

(12.14) 

I =$+sin BcosB(7sinZB-3)= 

= + (2 sin 2~ - 7 sin 4 ~ )  , 

The term gJ0) represents the gravitational pull of a spherical nonspinning 
Earth (having the same mass  as the rea l  Earth), while g?, g4). @:), g!!) a re  
the corrections introduced by the Earth 's  nonspherical figure and its spin. 
Let us  assess  the ratio of these corrections to the principal component gp. 
We shall make use of relations (12.8) and (12.14). 
flattening u is a very small quantity, we shall only retain te rms  of the 
lowest order  of smallness. 
(12.11), we take 

Since the Earth's 

Moreover, on the basis of the numerical values 

Wa, m = - - a .  
Y. 

Then, 

x - = a:a2. P (12.15) 
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We shall also apply the well-known property of Legendre polynomials 18 1 

IPlo(sin B)I < 1, (12.16) 

and the inequalities 

Finally, in orbit 

r>ae. (12.17) 

In the result, we obtain the following estimates for the maximum values 
of the relevant ratios: 

(12.18) 

We see from these estimates that the perturbing accelerations g?, @, &), 

and g$ are  indeed small in comparison with the principal acceleration gi% 
They rapidly decrease with the distance r from the Earth 's  center. 
corrections &I and may further be treated a s  of second order  of 
smallness relative to g$z) and @. 

The 

12.5. GRAVITY ANOMALIES 

As we  have previously observed, the geocentric reference ellipsoid is 
an approximationto the Earth's figure. G e o i d  u n d u l a t i o n s ,  i.e.,  
the deviations Ah of the geoid from the reference surface, a r e  introduced 
for  the exact description of the geoid figure. According to the latest 
measurements, the undulations do not exceed some 150m 161, which is 
much less  than the deviation of the reference ellipsoid from a sphere 
(the difference between the equatorial and the polar semidiameters of the 
geocentric reference ellipsoid is close to 22.1 km). 
Ah can be represented as a function of the latitude B and the longitude I 
by ser ies  expansion in spherical functions 16, 211: 

The geoid undulations 

c o n  

n=2 m=O 
Ah = 2 z (anm cos mL+ B,,, sin mL) P nm (sin B), (12.19) 

where anm and prim a re  the expansion coefficients, and Pnm(sin B )  a re  the 
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associated Legendre functions, defined by 

dmP (f) P,,, (sin B)  = COS, B +, 

Pno (sin B) = P,, (t),' t = sin B. 
(12.20) 

Here 

is a Legendre polynomial ( a  zonal harmonic of the expansion). 

the gravitational potential u, which is written a s  
The deviation of the geoid from the ge0centri.c reference ellipsoid affects 

U = Uo+ AU, ( 12.2 2) 

where 0, is the normal potential corresponding to the reference ellipsoid, 
and AU is the potential function of gravity anomalies. 

The anomalous potential hU can be determined with the aid of Bruns' 
lemma 1 8 ,  211: the anomalous potential on the reference surface is related 
with the geoid undulation Ah by the expression 

b c = g A h ,  (12.23) 

where 9 is the gravitational acceleration on the reference surface. 

can be replaced with some mean go. 
Since the gravitational anomalies are  small, the acceleration ,j in (12.23) 

Then, making use of (12.19), 

To pass from the anomalies Ag on the reference surface to the anomalies 
AU in the external space, we apply a well-known result of the potential 
theory I S ,  2 1 I .  
is given by 

Let U, be a potential whose value on a sphere of radius R 

n 

o,, = 2 (unn, cos mL + b,,, sin mL] Pn, (sin B). 
rn=O 

The potential in the external space is then 

Rn+l 
Urn=- 2 (u,,, cos mL + bn, sin mL) P,, (sin B). p + I  

m=O 

Seeing that the anomalous potential AU is small, and that the Earth 's  
figure is close to a sphere of mean radius R = 6371 km, we take expression 
(12.24) a s  defining the anomaly AU, not on the reference figure, but on the 
mean sphere. We thus obtain the following expression for the potential 
of gravity anomalies: 

(12.25) 
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From (12.2) and (12.22) it follows that the anomalous gravitational 
acceleration is 

Ag= grad AU. (12.26) 
.a 

Since the potential AU is a function of r and B, but not of the longitude L ,  
the vector A g  wil l  in general deviate from the plane of the meridian (unlike 
the normal acceleration which is in this plane). The projections of the 
vector Ag on the radius-vector r ,  the normal B to the radius-vector in 
the plane of the meridian, and the normal L to the plane of the meridian 
a re  given by 

Inserting (12.25) in the right-hand sides of these equalities and making use 
of (12.20), which give 

d m sin B -Prim d B  (sin B) -- - P,,, (sin B) + P,,, (sin B), 

we find 

Gravity anomalies can be determined if the coefficients unm and prim in the 
expansion (12.19) a re  known. The reference surface is commonly the geo- 
centric reference ellipsoid o r  some close biaxial oblate ellipsoid with its 
axis along the Earth's spin axis, and its center at the Earth 's  center of 
gravity, In determining the total gravitational field of the Earth, its normal 
component should be taken to coincide with the field of the reference figure. 

Exact determination of the coefficients anm and Prim is a complex problem, 
whose solution has not yet been completed. According to the latest data for  
these coefficients 161, the components of the vector A g  calculated from (12.27) 
are  not greater than 6 -10-4m/sec2, o r  6 e, at the Earth's surface. 
They rapidly decrease with the djstance from the Earth's surface (as  the 
fourth or higher power of 1 / r ) .  Note that this applies to averaged gravity 
anomalies. 

Direct measurements show that at some points of the Earth's surface 
(mainly on oceanic islands) gravity anomalies a re  higher by one order  of 
magnitude / 2  11. 
on the motion of artificial satellites. 

It follows from the preceding that the contribution of the Earth's non- 
spherical figure and its spin is mainly determined by the components $i 
and g$ of the normal gravitational field. The higher normal-field components 

and ,A;)> a s  well a s  gravity anomalies, a r e  of second order  of smallness 
relative to the main perturbations. In the next chapter, we shall therefore 
concentrate on the effect of the principal perturbing accelerations gi2) and gg). 

These anomalies, however, a r e  local, and have no effect 
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chapter 13 

THE INFLUENCE OF THE SECOND ZONAL 
HARMONIC OF THE GEOPOTENTIAL ON THE 
MOTION OF ARTIFICIAL EARTH SATELLITES 

13.1 THE PROJECTIONS OF PERTURBING 
ACCELERATION ON AXES CONNECTED 
WITH SATELLITE'S POSITION IN ORBIT 

As we have shown in the previous chapter, the influence of the Earth's 
nonspherical figure and spin on its gravity is principally described by the 
second te rm in the series expansion of the normal gravitational potential 
(12.10) (the second zonal harmonic). 
perturbing accelerations 6 2 )  and @ produced by this zonal harmonic a re  
small in comparison with the main part g$W of the Earth's gravitational 
acceleration. In analyzing their effect, we shall therefore apply the 
methods developed in  Chapters 2,  3, and 11 for  small  perturbing accelerations 
in circular and elliptical orbits. We first determine the projections S, T , W  
of the perturbing acceleration on the axes of a coordinate system connected 
with the satellite's position and the sense of its motion. The acceleration 
S is along the radius through the attracting center and the satellite's mass  
center, the acceleration T is at right angles to this radius in unperturbed 
orbital plane (it points in the direction of satellite's motion), and the 
acceleration W is normal to the orbital plane, completing the vectors S 
and T to a right-hand triad. 

From (12.18) it follows that the 

Figure 13.1 depicts a hemisphere through 

FIGURE 13.1. Normal gravitational acceleration of the Earth 
resolved along coordinate axes connected with the satellite's 
position in orbit. 
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the satellite's position D ,  with i ts  center 0 at the Earth 's  center. 
projection of the orbit on this hemisphere is the great circle QDE2p. 
points 
nodes, and the point N is the north pole of the sphere. 

through the point D, respectively. 
accelerations g, and g,, a s  well a s  the projections S, T, and W. 

We see from the figure that 

The 
The 

and b a r e  the projections of the ascending and the descending 

c* 
The circles QDIBand NDD, represent the equator and the meridian 

The figure also shows the perturbing 

S=-g,, T=g,eos  8 ,  W=g,sin 6 ,  (13.1) 

where 8 is the angle between the orbital plane q D E 3  and the plane of the 
meridian D,DN. 

We substitute expressions (12.14) for the main components of the 
perturbing acceleration, @:) and dT,. 
B and the angle 6 among the resulting expressions, we make use of the 
spherical right triangle $/ODi, where 

To eliminate the satellite's latitude 

u being the angular distance of the satellite from the ascending node Q .  
and i the inclination of the orbit. 

From the triangle QDD1,  we have 

I sin B = sin f i  sin i ,  

sin 6 =-- 7, co8 i 
cos 

cos 6 - s'n eos 
cos B ' 

Substituting (12.14) and (13.2) in (13.1), w e  find 

s =+ (3 sinzi sin2 u - 1) e 

=-- 2r' [3 sinal sin 2 (u+ $) +2 -3  sin2iJ. 

T = - + sin* i sin 2 ~ ,  

W- - -$ sin 2 i  sin u. 

13.2. SECULAR PERTURBATION OF THE 
CIRCULAR ORBIT PLANE 

(13 .2)  

(13.3) 

From (13.3) we see that these perturbing accelerations a r e  a particular 
case of the periodic perturbations described by (3.5). Let u,, be the distance 
of some initial position from the orbit 's ascending node, and 'p the angular 
distance of a current point from that initial position. Clearly, 

(13.4) 
U=&-j-'p. 
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s,= - -k (2 - 3 sinzi), S, =o, 
~ , = - - ~ s i n ~ i ,  2 1 4  qs..=-(G+ u,,), 

2r' 

T, = T ,  = 0, T, = - 5 sin? i, Q T ~ =  - %* 

W, = W, =: 0, W, = - 5 sin 2i, 

sk=Tk=wk=o npw R>3. 
qw, = - I",, 

(13.5) 

> 

Let us first consider the secular perturbations of circular orbit produced 
by these perturbing accelerations. 
perturbations a re  of two kinds: 

From Sec. 3.9 it follows that these 

(a) continuous rotation of the orbital plane due to W ;  
(b) variation of the orbital period due to S and T. 
From (3.34) and (13.5) we see that the orbital plane is rotated around 

the axis OE (Figure 13.1), which makes an angle 

R 
a*=- 2 (13.6) 

with the line of nodes OQ. 

of revolution. 
w e  find 

Let 69  be the angle of rotation of the orbital plane during one circuit 
Setting q =  Zn, t m = t  in (3.35) and making use of (13.5), 

(jQ= -ze sin 2i. (13.7) r2 )r 

The maximum linear displacement of the satellite per one circuit (at 
right angles to the orbital plane) clearly obtains upon passage through 
the ascending node Q:  

We now calculate the corresponding secular variations in the inclination 
i and the node longitude 62. Making use of (9.53), (13.6), and (13.7), we find 

In (13.7), (13.8), and (13.9), we substitute for +its approximate 

expression (12.15), which gives: 

~ . y  -$(+)'a sin 2i, 

b 6 c ~ a l s l n 2 1 1 ,  4 

6~ .y---n(+)'acosi. 

(13.9) 

(13.10) 
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It follows from the preceding that the Earth's nonspherical figure and 
spin cause continuous variation in the orientation of the circular orbit plane. 
The inclination i does not display secular variation, whereas the node 
monotonically moves in one direction (east-west for 0 6  i < n / 2  and west- 
east  for  n / ~ < i < n ) .  

Fhe node of polar orbits ( f  = n/2) shows no secular displacement. As 
the orbital plane is closer to the equator, the rate  of secular displacement 
of the dode increases.  The instantaneous axis of secular rotation of the 
orbital plane, OE, is in this plane at right angles to the line of nodes, The 
maximum angular rate of rotation of the orbital plane about this axis i s  
observed for i = n / 4  and I =  3n/4 (maximum rate of rotation does not coincide 
with the maximum rate  of node displacement: as the orbit approaches the 
equator, the ratio of these rates  approaches zero). For polar and equatorial 
orbits ( i  = 0, n / 2 ,  n), the angular rate of secular rotation of the orbital 
plane around the instantaneous axis is zero. 
displacement of the satellite is observed for  nodal passage in orbits with 
i =  n / 4  and i =  3x14. 
to the square of the radius of the circular orbit, and the linear lateral 
displacements a re  inversely proportional to the radius to f i rs t  power. 
secular displacements a re  approximately proportional to the Earth 's  
flattening a. 
circuit 6~, , ,=0° ,6,  maximum rotation around instantaneous axis per one 
circuit f$map 033, and maximum lateral displacement per one circuit 
B5max=33.5km. For distant satellites moving in the neighborhood of the 
Moon's orbit (r=384;000krn), 6 Q m a J 4 1 1 , 6 ,  

Maximum linear lateral 

The angular displacements a re  inversely proportional 

The 

For close satellites (r-crna), maximum displacement per one 

6$max~~0".3, h t m a x = 0 0 . 5  km. 

13.3. PERTURBATION OF SATELLITE'S ORBITAL 
PERIOD IN CIRCULAR ORBIT 

We now proceed with the perturbation of the period of revolution. From 
(3.10), (3.40), and (13.5), we have 

Hence, making use of (1.5)> 

2% c 3 AP = - - - (2 - 3 sinZ I +  - 2 s i d i  cos flu,,), 
G P  

(13.12) 

Note that, unlike the perturbations 89 and &st, which represent 
monotonically growing displacement of the orbital plane, the variation 
AP is a constant correction to the satellite's orbital period: it i s  the 
difference between the sidereal and the osculating periods of revolution at 
the point of origin (see Sec. 13.6). 
corresponds to a growing secular displacement of the Satellite's position 
along the orbit. 
per circuit: 

The orbital period correction 

Making use of (1.4), we can calculate the displacement 

2 r  c 3 b6 = - AFw E -L r P  - (2 -3 sin2 i + H sinz i cos 2u0). (13.13) 
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Substituting the approximate expression (12.15) in relations (13, l l ) ,  
(13.12), and (13.13), we find 

(13.14) 

,31a 

fi P~==Zne-=84.5min (13.15) 

is the period of revolution of a hypothetical satellite moving in circular 
orbit whose radius is equal to the semimajor axis of the geocentric 
reference ellipsoid. 

attains i ts  peak value for i = u 0 = $ .  

corresponding perturbations: 

The function of the angles i and tio in the right-hand sides of (13.14) 

Hence the peak values of the 

(13.16) 

For close satellites ( t = a e ) ,  I$),,p0.0042, IAf'JmaxdI.35 min, 1611maxd67 km. 

For  distant satellites moving in the neighborhood of the lunar orbit 

( r =  384,000 km), IF1,,,,,=1.15 . l om6 ,  IL\Pl,a,cO.O45min,l61{,,,~2.% km. 

secular displacement in the orbits of artificial satellites. 
is both along the orbit and at  right angles to the orbital plane. 
for close satellites, but although it rapidly decreases with increasing flight 
altitude, it is nevertheless noticeable for satellites moving near the lunar 
orbit. 

The Earth 's  nonspherical figure and its spin thus produce a substantial 
The displacement 

It is larger 

13.4. PERIODIC PERTURBATIONS OF CIRCULAR ORBIT 

To determine the periodic perturbations of circular orbit, we substitute 
expressions (13.3) for the components of perturbing acceleration in relations 
(3.6). 
for the total perturbations Ar and AI along the radius and along the orbit: 

Making use of (3.7) and (13.4), we obtain the following expressions 

Ar=-&+$.&2- 3sinZi-C.3 sinZicos2($+u0)] sin (cp-+)+ 

+4 sin? i sin 2($+ u,,) [ 1 -cos (cp -*)]I dq, 
0 

Al = r Au = .!. "$4  [2 - 3 sin2 i + 3 s idi  COS 2(9+ go)] X 
I r 0  

X 11 -cos (cp -+)I + sin2 i sin 2 (*+ 110) [3 (q -9) - 4 sin (cp -9)] $$. 
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These expressions can be written as 

where 

Making use of (3.20), we obtain after some manipulations 

J, = 1 - C O S T ,  

J2 = +/isin ($+ 2a0+ cp) - sin(3$+ 2u0 - cp)ldq = 
0 

1 =~[3cos(2f~o+cp) -2cos2(uo+'p) -cos(2uo-~) ] ,  

1 1 3 = ~ [ c 0 s 2 u 0  -ccos2(cp+uuo)], 

J. = +$ Isin ($+ 2%+ cp)+ sin (39+ 2 4  - 
Q 

d ~ ,  = 
0 

1 = T I3 cos (2& + cp) - 4 cos 2 (no 3- (P) + cos(2uo - T)], 

Js = cp - sin cp, 

Je= ~[s in2(cp+ao) - s in~] ,  1 

(13.17) 

(13.18) 
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'p 

Je = 4 [cos (3Ji + 2ao - (p) - cos ($ + 2uo + cp)] dJ, =L 

= f 13 sin (2u0+ cp) - 2 sin 2 (uo+ 9) - sin (2u0 - cp)]. 

0 

Omitting the terms with cp (which describe the previously considered 
secular perturbations) from the expressions for  J5 and J8, w e  substitute 
these relations in (13.17), which give the following equalities for the 
periodic perturbations: 

+err = - -!- E{(2 -3sinai)(1- cos (p)+ 

+ ~ [ 1 2 c o s 2 u o -  3cos(2u,+Cp)- 
2r P 

sin* I 

- - 2 c o s 2 ( ~ + 9 ) - 7 c o s ( 2 u o - 9 ) ] ) ,  

= - - l e  -{(2-3.sinzi)sin cp+ 
r p  

+% 19 sin 2 4 4 -  6 sin (2u0f  q) - 
-sin2(uo+cp)- 14sin (2u0-9)]}. 

These relations can be written a s  

(13.19) 

4 e g  = A g +  A, sln cp+ A2 COS q+A, sin 29+A4 COS 29, 
A& = AoL+ A, sin 'p + A,cos cp+ A, sin 29+ A,, COS 29, 

where Aor, Aol, Ai  ( i= l ,  2,  . . . , 8) a re  some functions of i, r, uo, Seeing that 

A1 sin cp+A~cos 'p- -sin (9- q,), (13.19a) 

where 

we write 

where Air, Ad, (pk ( i = O ,  1, 2; k- 1, 2, 3, 4) a r e  some functions of i, 1, uo which 
are constant for each given orbit. 
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The periodic perturbations of circular orbit thus reduce to some constant 
displacements of the satellite in  the directions r and 1,  and also periodic 
distortions of the orbit whose frequency is equal to the satellite's orbital 
frequency and to twice that frequency. 

the case of an equatorial satellite ( i =  0). 
To estimate the magnitude of these periodic perturbations, we consider 

Expressions (13.19) take the form 

(13.21) 

The peak magnitude of these perturbations is estimated with the aid of 
equality (12.15), which gives 

(13.22) 2 e a, 
ldperrlmax= IAperllmax 77 TUP- 

For low-flying satellites ( r=ae) ,  

IURI 5 I Aperllrnax = &a = 21 km. 

To find the periodic perturbation at right angles to the orbital plane, we 
substitute (3.7) and (13.5) in the first t e rm in the right-hand side of the 
corresponding equality in (3.22). Thus, 

(13.23) 
l e  sin2icos u,sinQ. 

Hence, making use of the approximate relation ( 12.15), we obtain the peak 
magnitude of A p e s :  

For low-flying satellites ( r - u e ) ,  

Making use of (2.32), we can show that the periodic perturbation described 
by (13.23) rotates the orbital plane around an axis through the satellite's 
initial position, the angle of rotation being 

1 e .  
9- - 221 I. sin 2i cos ug. (13.26) 

The peak magnitude of this angle is 

For low-flying satellites ( r ~ a , ) ,  

I9 I max x 2.9. (13.28) 
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The nonspherical figure of the Earth and its spin a re  thus seen to cause 
periodic a s  well a s  secular perturbations in the orbits of close satellites. 
The linear magnitudes of the periodic perturbations, however, a r e  inversely 
proportional to the radius of the circular orbit. -1 

13.5. SECULAR PERTURBATIONS OF ELLIPTICAL ORBIT 

The secular perturbations in elements of elliptical orbit can be found 

from (4.19), (11.39), and (13.3). In calculating the small  ratios - - and 

E we take g x % .  
g' 
for the increments of the corresponding orbital elements per one circuit 
of revolution: 

S T  
g '  g' 

We thus obtain the following approximate expressions 

2 e  i Sp = - - - sinZ i (1 + e m s  8)  sin 2u de, 
* l i  0 

-[2cos6+e(cos26+ 1)](1+ecos6) sinaisin2u)d6. 

To facilitate the integration of the right-hand sides, we consider a 
definite integral of the form 

2n 

J~ = j sin" (x  + a) cosm (x + a) dx, 
0 

where a is a constant, and n and m a r e  arbitrary integers, at least one 
of which is odd. To avoid ambiguity, we put 

m = Z k + l ,  

where k is an integer. Then 

2% slna 

J~ = j sin" (x  + a) 11 - sin2 (x + a)]# cos (x  + a) dx = J ye (1 - g'>" dy = 0. 
0 8111 a 

It can be analogously shown that Ji= 0 for n = Z k + l .  
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Thus, 

I",,' (x+ u) cos"' (x+ a) dx = 0, 
0 

(13.30) 

if  at least one of the integers n o r  rn is odd. 
applies i f  the sum (n+rn) is odd. 

In particular, this equality 

Let us now consider an integral of the form 

where n, rn, p ,  9 a r e  integers, and a a constant. This integral may be 
represented as a sum of integrals: 

i 6  

where At (i= 1, 2 , .  . . )  a re  some trigonometric functions of the constant a, 
and ni and mi a r e  integers satisfying the equality 

Hence, applying (13.30), we find 

(1 3.31) 

if the integer sum n+m+p+q is odd. 

by the well-known expression 
Now, the angles u and 6 in the right-hand sides of (13.29) a re  related 

u=v+o. (13.31') 

The argument of the perigee o ( a s  well a s  the other orbital elements) is 
assumed to be constant during one circuit of revolution (this assumption 
holds true in our  approximation). In calculating the right-hand sides of 
(13.29) we can therefore omit all terms which vanish in compliance with 
(13.30) and (13.31). Thus, 

6p = 6i = 0, 

de =--essfnzi (6sinVcosVsin*u--3~os~Vsin2u)dV= l e  
P1 P 

0 

=- (sin 26 sin 2u+ cos 2V sin 2u) dV = 0, 
0 

2% 

I- 2 coszi? (3 sin2i sin2 u - 1) - 3 cos 6 sin Q sin 2u sin2 i + 2 sin2 u cos2 i ]  dV = 

2n 

[ -sin2i(6cos26 sin2u+ 3cos 6 sin V sin 2a)+ 
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2ST 
3 .  + 2cos2 S+ 2 coszi sin2 u] d6 = 1 { - sinz i [( 1 + cos 213) (1 -cos 2u)+ 

P o  

+ sin 26 sin 2u] + 1 +cos 263- cos2 i (1 -cos 2a))dV = 

n e  = J- An(-- 3 sin2i+ 2+ 2cos2 i )  = -(5 cos2 i - 11, 
p2 I1 P P  

P2 P 

The expressions fo r  the increments of the elements of elliptical orbit 
per one circuit a r e  thus written (to f i rs t  approximation) a s  

Sp = 6e =6i = 0, 

P P  
I C E  6~ = y - (5 COS* i - l), 

2n e 6,Q = ---cos i. 
p l r  

Making use of the approximate equality (12.15), we write 

I &fi =? ("r a(5cos2i - I), 
2 7  

SQ, = --n (9r acosi. 

(13.32) 

(13.33) 

Upon passing from elliptical to circular orbit, the parameter p equals 
The formulas for the secular displacement 60 the radius r of the orbit. 

of the perigee a re  then meaningless, and the formulas for  the displacement 
6Qof  the node reduce to the corresponding equalities (13.9) and (13.10) 
derived for circular orbit. 
in the orientation of the elliptical orbit may therefore proceed from the 
results obtained for circular orbit in Sec. 13.2 .  

for some critical inclinations, 

The qualitative analysis of the secular variation 

In analyzing the secular displacement of the perigee, 8 0 ,  we note that 

icrl  = a r c c o s G z 6 3 " 2 6 '  and icr2=n-icr,=116"34/, (13.34) 

we have 
direction of satellite's motion. For icrt<i<icr2, 60<0 and the perigee 
regresses.  
in equatorial orbit (i = 0): 

= 0 .  For i<icr, o r  i>icr2. h > O ,  i. e. ,  the perigee moves in the 

The rate of perigee displacement (for p =  const) is maximal 

(13.35) X E  
b,,, 4 7 - = 2n (+. P P  

For low-flying satellites ( p e a e ) ,  6 w m a x x  2 x a x  192. It follows from (13.35) 
that the rate of secular displacement of the perigee point is inversely 
proportional to the square of the parameter p ,  decreasing a s  the size of 
the orbit increases. 
orbit ( p =  384,000 km), 6wnar*1".2, which is a substantial figure. 

For satellites moving in the neighborhood of the lunar 
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Let n be the total number of circuits completed by a satellite in a certain 
time. 
given by 

The displacements A Q  of the node and Am of the perigee a re  clearly 

A Q  I n6 Qn Am = n6a. (13.36) 

Let nbl and no be the number of circuits for which the total displacements -. hQand Ao a re  27r. Once the satellite has completed n, and n, circuits, the 
orbital plane and the perigee point return to the original position. 
essentially these a re  long-periodic perturbations. 
of these disturbances a re  given by 

Therefore, 
The periods P ,  and P0 

P ,  = n,P, Fa = nap, 

where P is the orbital period of the satellite. 
From (13.32), (13.33), and (13.36), we see that 

(13.37) 

(13.38) 

Hence it follows that na -00 for i++ ,  and n O - w  fgr i+icri o r  i-+icrz. 

orbit ( i =  0), when 
The minimum circuit numbers nn, and n, obtain for a satellite in equatorial 

(13.39) 

Note that for i= 0 the evolution of the orbit 's  node is a meaningless effect 

should therefore be considered a s  the limit for n, as  i + O .  
(since the node in this case is an indeterminate concept). 
for 

The expression 

For  low-flying satellites ( p x a r ) ,  

(13.40) 

To form a more detailed idea of the exact nature of long-periodic 
perturbations, we consider the example of nearly periodic orbits. Let 
rpert and runpen be the distances of the satellite from the Earth's center in 
perturbed and unperturbed orbits, respectively. 
(2.41), we find 

Making use of (2.38) and 

fper t  = f m  [I -e  cos (U - Q - nh) ] ,  
runpen= r, 1 - e cos (hf  - o)], 

where rm, e, w ,  X a r e  respectively the mean radius, the eccentricity, the 
argument of the perigee, and the mean angular velocity in unperturbed orbit, 
n the number of circuits from injection. The radial perturbation is thus 
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given by 
Ar = f ~ ~ ~ ~ - ~ ~ ~ ~ ~ ~ ~ = e f m [ c o s ( h , f - ~ ) - c o s ( h , t - ~ -  nib)]= 

nbo - 2erm sin (u - o - nb sin- T )  2 * 

Seeing that 
At t n = F = g ,  

we write for the preceding equality 

Ar=-Zer,sin h, 1 -- t--o s i n e f .  [ ( 2) I 4n 

&3 Now, = < l .  
to vary with a frequency which is close to the orbital frequency of the 
satellite. The amplitude of these fluctuations is given by 

We may therefore approximately take the perturbation Ar 

In other words, the radial perturbations Ar a re  in the nature of beats whose 
frequency is close to the satellite's orbital frequency. The peak amplitude 
of these beats is 

Amax = Perm, 

and it is observed at 

t =Pa (R + +) , 

where k is an integer. 

have the same form (with Pa substituted for & I .  
Amax = rm. 

For f E P a k ,  the amplitude of these beats is A = O .  
The perturbations at right angles to the orbital plane can be shown to 

The peak amplitude is 

13.6.  PERTURBATIONS OF ORBITAL 
PERIOD IN ELLIPTICAL ORBIT. 

Besides the secular perturbations which entail rotation of the orbital 
plane and movement of the perigee, there a re  also secular displacements 
of the satellite's position along the orbit (or, equivalently, perturbations of 
the time of arr ival  of the satellite at any given point). For the particular 
case of circular orbits, these perturbations were investigated in Sec. 13.3,  
where they were shown to cause a certain change in the orbital period. 

revolution in elliptical orbit. 
orbit the period of revolution is a very vague concept. Indeed, for 
unperturbed plane orbit, the period of revolution P is defined as the time 
in which a radius-vector OD through the Earth's center 0 and the satellite's 
center D returns to its initial position. 

We now proceed with the analysis of perturbations of the period of 
It should be noted, however, that in elliptical 

In the presence of secular 
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the radius-vector OD 
iod of revolution is 

n o d i c a l  p e r i o d  o f  r e v o l u t i o n  Pa -the time between successive - *  
south-north passages of the satellite through the equatorial plane, i. e., 

node Ql of two 
revolve from ascending node Qo to ascending 

circuits (Figure 13.2); 
i o  n PB - the time between successive 

of the satellite through the points Do and Di on a conical surface 
nt geocentric latitude 5 (the satellite crosses the conical surface 

s i d e r e a l  p e r i o d  of r e v o l u t i o n  P,-the flight time from some 
point Do of the orbit to another point D'in the plane through the radius-vector 
ODO, at right angles to the plane of the osculating orbit at the point Do.  

Some other orbital periods are also in use: 
a n o m a l i s t i c  p e r i o d  o f  r e v o l u t i o n  JJn -the time between two 

o s c u l a t i n g  p e r i o d  o f  r e v o l u t i o n  P'-the time of revolution 
successive perigee pass ages; 

in osculating orbit. 

FIGURE 13.2. Illustrating the relatlonshlp 
between various orbital periods. 

nt. It is ther also called the u n p e r t u r b e d  

oint a r e  known, the corresponding P is easily found 
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where AP is the perturbations of the orbital period, which is generally small 
in comparison with P and P I .  

are  not only different, but they actually depend on the choice of the initial 
position Do to which they are  referred. As regards the periods P ,  and Pz, 
they a re  referred to fixed points (the node and the perigee), and they a re  
therefore unambiguously defined for each circuit of revolution. 
with i#O, it is the nodical period of revolution P ,  which is of the greatest 
significance: each passage of a satellite through the equatorial plane can 
be accurately recorded by tracking instruments. The time of perigee 
passage is more difficult to determine, especially for low-eccentricity 
orbits, where the position of the perigee point is fairly uncertain. 

From the definitions of the periods Ps, P,, and P' we see  that these periods 

- *  

For orbits 

13.7. NODICAL PERIOD OF REVOLUTION 

In deriving approximate relations for the nodical period Pa we should 
note that during the nodal passage of the satellite in its real  orbit, the 
corresponding osculating orbit also passes through the node. 
immediately 

Hence 

2n 

Pa=/ ;ii;dii, di (13.41) 
0 

where f is the flight time, and u is the angular distance from the current 
point to the node of the corresponding osculating orbit. 

From (11.14) and (11.25) we have 

(13.42) 

(13.43) 

From (11.14), (12.15), and (13.3) it follows that the second te rm in the 
right-hand side of (13.43) is a small quantity (of the same order  a s  the 
Earth's flattening a). Therefore, neglecting te rms  of the order  a¶, we write 

(13.44) 

Substituting in (13.41) and applying (4.19), we find 

The osculating elements p. e, o, i in the right-hand side of this equality a re  
given by 

p EE PO+ Ap, e = eo+Ae, o E COO +A@, i= io+ Al, (13.46) 
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U U 
A p =  1% du, Ael=$-;i;;du, de 

Aa=J$du,  A i =  f $du. 

0 0 
U U 

Substituting (13.46) in (13.45), we have, to te rms  of the first order  of 
smallness, 

(13.47) 

where 

(1 3.49) 

P i  is the osculating period at the node, and Apt, APz, AP3. AP, are  
corrections to this period. 
a r e  also small. 

ignored in calculating the derivatives g, x, = f o r  substitution in (13.47). 

For small  eccentricities ( e < ! ) ,  these corrections 
Therefore, t e rms  of higher order  of smallness can be 

de do 

Proceeding a s  in the derivation of (13.29), we find 

dp=--- a e sin2 io ( I + e, cos 6)  sin 2 4  
du Po P 
-=--{sin de 1 e 6( i+e,cos 6)2(3 sin*losin2u- 1)- 
dU dfi 

2 = 5 [ - 
CiU P;: r eo 

-[2cos8+eo(cos26+ l)] x 
x (1 +e,  cos 6) sin2io sin 2 4 ,  

( i +eo cos 8)2(3 sins io sin2g - 1 - 
-*+q(~ +e0cos6)sin6sin2usin2i~+ 

e0 + 2(1 +e,cos 6) sin2 cos* io], 

(13.50) 

where 

6 = u  - 0 0 .  ( 13.5 1) 
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- The determination of corrections to the orbital period from (13.49) 
reduces to  evaluation of integrals of the form 

where f ( u )  is a function of the angle u ,  and q one of the elements p, e or o. 
Integrating by parts, we find 

(13.52) 

where 
2n 

F ( u ) = j f ( u ) d u .  6 q = l  %du= Aq(2n). 
0 

Note that 8q is secular perturbation of the corresponding elements per  one 
orbital circuit, as defined by (13.32). 

To simplify further manipulations, we  shall consider low-eccentricity 
orbits, and all calculations wi l l  be carried out to te rms  of the first order  
of smallness in e.  
be omitted. 

The subscript o for osculating orbital elements will 
Then, applying (13,51), we have from (13.49) for the corrections 

BPI, APz. OPs 

2n 

WI=-$- f l$  (1-2ecos6)Apdu, 
0 

2n 

A P 2 = 2 e  J (cos6-3ecos2f+)Aedu, 

APa=- f (sin 6 - He sin 26) e Aw du. 

fill 

2 f l  3 
fi$ 

2n 

Note that 

J (1 - 2e cos 6)du = u - 2e sine, 

(13.53) 

1 (cos 6 - 3e cosz6)du = sin 6 - e (u + $ sin 26). 

1 (sine - T e sin B) ciu = - cos a+ -g e cos 20. 3 3 

We apply transformation (13.52) to integrals (13.53). Making use of 
(13.32), (13.47), (13.50) and omitting all t e rms  which contain the square of 
the eccentricity c, we find 

3 c  APl=- - -sin2 i / (u-2esin 6)(1+ecosft)sin2udu= 
G P  

h 

i - 3 E  - - -- sin2 i [u sin 2u + 
+ e (u cost) sin 2u - 2 sin 6 sin 2u)l du, 

G r  
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Il l  

A P ~  = - --$ 2 e  [sine - vz P o  

2n 2% 

2n 2n 

-e sin21 ( f 1 u sin 6 sin2 udu - 3 1  u cos 6 sin2udu) + $ L ~ u  sin 6 du] , 
0 0 0 

- T e ( u +  3 ;sin w)] {sin 6(3 sin2 i sin' u - I )  - 
- 2cos 6 sin 2u sin2 i+e  [sia 26(3 sin2 u sin21 - 1) - 
-(3cos2++ 1)sin2usinzij ) d u e  

v-z P o  

In 
- - -2 A $ { sin2 6 (3 sin2 u sin2 1-  sin 26 sin 2u sin2 I+ 

+e [sin 6 sin 26 (3 sin2 u sin2 i - 1) - 
-sin 6 (3 cos2 e+ 1) sin 2u sin2 i - 
-+(u+ +sin 26) (3 sin 6 sin2u sin2 i - 

- sin 6 - 2 cos 6 sin 2u sin2 i)] Idu, 

A P ~ = ~  (Le cos 20 -cos 0 e h +  

3.2 5 $ (cos6-$ e cos 2t+){--Cos 6 (3sin2 u sin2i-11- 

- 2 sin 6 sin 2u sinzi +e [- 2cos2 6 (3 sin' u sin2 i - 1) - 
- 3 cos 6 sin 6 sin 2n sin2 1 +2 sin2 IC cos2 i) \ du = 

6 4  1 
2% 

vi& P o  

e (5 cos2 I - 1)cos w - 2n e =- -- 
G r  

2ll 

--LL j {cos2+(3sin2usinai - I ) +  

+sin 26 sin 2u sin2 i+e [2 cos3 6 (3 sin2 u sin2 6 - I)+ 

+3cos2~sin(Esin2usin2i-2cos6sin~ucos~i- 

- 7cos 26 (3 cos 6 sin2 u sin2 1 -cos fE + 2 sin 4. sin 2u sin2 i)] du. 

G P o  

3 

Omitting all terms of the order  e? as  well  as  those terms which vanish 
in virtue of (13.30) and (13.31), we find 

I (  13.54) 

I (4 - 5 sin2 i )  e cos a- APa=----  2% e 

G P  

2n 2n 
- e [ sin2 t' (3 [ cOs2ft Sin2 ndu +$ sin 26 sin 2u du) -~cos26du] .  

0 
G P  
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In evaluating the integrals in the right-hand sides of these equalities, 
we make use of the, identities 

S u  sin udu = sin 14 - II cos u, 

s ucos u du = cos u+ IC sin u, 

whence 
233 

J 
0 

(13.55) 

Hence, making use of (13.51), we have 

T u  sin 2udu = -x, 
0 

u Cos 6 sin 2u du = 

0 1 
2n 

= [ [ u  sin(3u -o)du +$ IC sin(u+w)du = 

2n 2n =?[{ usin3udu+ l usinudu = - ~ ~ c o s w ,  
0 

ZlC 

14 
2x 21 

sin26sin2udu =7 1 / (1 -cos26)(1 -cos2u)du=$+~$ cos26cos2udu= 

0 b 0 
zn 

= + i l  [cos ( 4 ~  - 20)+ cos 201 du =+ + $ cos 20, 

r s in28s in2u  d u = ; 6  [cos2~-cos(4u-w)~du=xcos2o,  

0 

2n 

0 
2n 2n 

J sin2 6 du = 1 (1 - cos 26) du =E, 
0 0 

u sin 6 sin2u du = [ u  sin 6 (1 -cos 2u) du = 

l i  =- ncosw -a u [sin (3u -a) - 
0 

1 4 
3 3 -sin (u+ o)] du = - xcos o - - x coso c - - xcos o, 

T u  sin 8 du = - 2x cos w, 
0 

2n 2n PR 1 cosz 6 sin2 u du = 1 sin2 u du - 1 sin2 6 sin2 du $ - f cos 2@, 
0 0 0 

;cos2 6 du = n. 
0 
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Substituting in (13 .54) ,  we find 

AP,=* ksin2 i (+ + 2e cos a), 
V Z P  

1 
4 

sinz i+-sinZi cos%+ 

+ 3e cos o - 2e sin2 i cos 0)  , (13 .56 )  

! 4 c c  3 1 .. APa=- - - -sin*i - -sinZi cos20 - 
4 

-4ecoso++sin2icoso . 1 .  
To calculate the correction AP, from (13.491, we make use of (4 .19 ) ,  

(11.32)> (13 .3) ,  and (13 .31) .  Neglecting terms of the o rde r  el, we find 

Substituting (13 .56)  and (13 .57)  in (13 .48) ,  and seeing that to terms of 

p = a ( l  -e*)=:, 

the order e 

we find (with the aid of (5.36)) 

5 Pa = P;l- -- 2x  E [3--sinzi-ecosw(l-5sin2i)]= 2 

= f q l - - -  I &  [3 -7sSin~i -eeosa(~  5 -5sin2i)I).  
G a  

(13 .58 )  
a' r 

Let APa be the difference between the nodical period of revolution and 
the osculating (unperturbed) period at the ascending node: 

LIP8 =Pa - P i .  (13 .59 )  

Making use of the approximate relation (12 .15 ) ,  we write 

where P E  is defined by (13 .15) .  
For close satellites in circular orbit (e=O, u=ae) ,  the maximum value 

of this correction and its magnitude relative to the orbital period {for i =  0) a r e  
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This correction is inversely proportional to a'!., and the correction-to- 

The expression for AP, contains a te rm which depends on the argument 
period ratio is inversely proportional to a*. 

of perigee and increases with eccentricity (unlike the secular perturbations 
80 and SQ, which are  independent of a). This property, established for 
low-eccentricity orbits, also applies for orbits with large e. More detailed 
investigations 1 7 ,  11, 121 show that for higher e, this term increases more 
steeply. For e+  1,  it approaches infinity. In other words, highly elongated 
elliptical osculating orbits may correspond to open real  orbits (and vice 
versa).  This is so  because for e= 1 ,  comparativeiy small  velocity 
perturbations near the perigee may convert an elliptical orbit into a 
hyperbolic one, or vice versa. 

' 

13.8 .  SIDEREAL PERIOD OF REVOLUTION 
BETWEEN ASCENDING NODES 

Of all the various definitions of orbital period, the sidereal period Ps 
is the most accurate characteristic of the time required to complete one 
revolution around the Earth. 
the satellite in the direction of i ts  motion. 
equatorial orbit u- 0) is equal to the period of revolution in plane orbit. 

the sidereal period P, wil l  be reckoned from the orbit's ascending node 
(i. e., we measure this period of revolution at the ascending node of the 
orbit). 
of s m a h e s s )  

Small perturbations of the period Ps displace 
The sidereal period P,in 

To avoid the uncertainty introduced by the choice of the initial position, 

From Figure 13.2 we see that in this case (to terms of higher order 

where [g), is the value of the corresponding derivative at the ascending 

node, SQ= - m~ is the perturbation of the ascending node per one circuit 
of revolution (in the west-east direction). 

smallness, we write 
Applying (4 .19) ,  (13.32),  (13.44) and omitting terms of higher order  of 

where r ,  is the distance of the ascending node from the Earth 's  center. 
If we now omit terms of the order  e2, we find 

P,=  P,+--[l  2 n a  -sin2i--coso(l-sin2i)j. 
G P  

Inserting fo r  Pa i t s  expression from (13 .58) ,  we obtain 

P, = P;Z -+A [2 -+ sin? i +e cos @ ( I +  3 sinti) = 

= P; { 1 - - - [2 - sin2 i + e coso( l+3  sin2 i ) ]  1. 
4P Ir I 

l a  3 
ax Ir (13.61) 
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For e =  0, the correction from (13.61) is equal to the corresponding 
correction for circular orbit, (13.12) ( i f  we put uo=O, i .e.,  the ascending 

In conclusion note that the last terms in the right-hand sides of (13.1 1) 
and (13.12) give the sidereal period P ,  a s  a function of the initial position 
(for e = 0). In particular, for equatorial orbits ( i  = 0) this dependence on 
the choice of the initial point vanishes. 

opted a s  the point of origin). 

13.9. LONG-PERIOD PERTURBATIONS 

From (13.58) and (13.61) we obtain a dependence of the orbital periods 
P ,  and P ,  on the argument of the perigee w.  
long-period perturbations with a period I?,, (the period of perigee movement). 
Of considerable practical significance a r e  the long-period perturbations of 
the nodical period P since they have a substantial influence on the epoch 
of nodal passage tarihis epoch is commonly assumed a s  the starting point 
of each successive circuit). 

The perturbations of the nodical period P ,  a re  calculated, not from 
(13.58), but from a more exact formula derived by I. D. Zhongolovich /7/ 
by a similar technique to terms of the order  e2: 

P, and P s  therefore experience 

where P=const is a mean orbital period of the satellite. 

to the osculating period P;1 at the ascending node is of the same order  a s  
the Earth's flattening a. As we have previously observed, the variation 
Gwin the argument of the perigee per one circuit is of the same order.  
We have also shown that the variation of a, e and i per one circuit of 
revolution is zero to terms of the order  a. 
of the order  a2 we may write, making use of the first  formula in (12.15) 
and the second formula in (13.32), 

Applying the first relation in (12.15), we see that the relative correction 

Hence it follows that to terms 

(13.62) 6P - 6P' - P E  - [l -5 sin2 i - e  cos ~ ( 1 8 -  15 sin? i)l e sin o60, 
n- n a 

where 6Ph and 6P;1 a r e  the increments of the corresponding periods per 
one circuit of revolution. 

The second t e rm in the right-hand side of this equality is of the order  
aa. 
equality, which gives the increment of the osculating period at the node per  
one circuit of revolution. 
may be written in the form 

We now calculate, with the same accuracy, the first term in this 

We apply the energy integral, which in our case 
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where U is defined by (12.10). 
Then, making use of (12 .15) ,  we omit the third term in the right-hand side 
of (12.10) and obtain the following relation for v and r at the node (Le. ,  
for B =  0 ) :  

We shall retain terms of the order  a only. 

T-$---- VZ I C  -const. 

Hence, making use of (4 .19)  and (5 .15 ) ,  we find 

I 2 E (l+ecoso)S ~ 3 - 3 ~  pa =const, 

where a, e and p a r e  the nodical values of the corresponding osculating 
elements. 

Applying (5.2) to this expression, we obtain to terms of the order  a’ 

(13 .63)  

where iia and 60 a r e  the increments of the corresponding osculating elements 
at the node per one circuit of revolution. 
we find 

Hence, making use of (5 .36 ) ,  

(13.64)  

From the above relations, and also from the first expression in (12.15)  
and the second expression in (13 .32) ,  we see that the increments 6a and 8 P a  
a re  of the order  az. 

Substituting (13.64)  in (13 .62 ) ,  we omit terms of the order asand aae2. 
We thus obtain the following expression for the variation of the nodical 
period per one circuit of revolution: 

(13.65)  e P  bP, = - F T ( 4  - 5 sin2 i )  (1 - 3e cos o) e sin oh. 

The increment 8 P ,  is thus of the order  a2. 

side of (13.65)  can be assumed constant. The period P ,  may be treated 
a s  a function of the argument of the perigee (I). Now, seeing that all the 
quantities a r e  smooth functions, we put do for 6o and write 

With the same accuracy, the elements P ,  a, e ,  and i in the right-hand 

0 

Pa (0) =pa (oo) - 5 2 (4 - 5 sin2 i) 1 ( I  - 3e cos o) e sin odw, 
ua 

P 

where p ,  (0) and P,(wo) are the values of Pa for some current o and some 
initial m0. 

nodical period P , ( r / 2 )  is denoted by Pi. 
Let the initial argument of the perigee be a,= s/2; the corresponding 

Then integrating, we find 

(13.66) 
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i. e., the nodical period Pa experiences long-period fluctuations whose 
cy is a multiple of the perigee movement frequency 

1 
vo=--. 

9" 
(13.67) 

where Pa is defined by (13.37) and (13.38).  ? -  

It follows from the first relation in (12.15) and from (13.66) that the 
amplitude of these long-period fluctuations of frequency vcp is of the order  
Part., and the amplitude of the fluctuations of frequency 2va is of the order  
Paez. Raising the order  of the significant te rms  in the expansion in the 
eccentricity e in (13.66),  we can recover long-period fluctuations of higher 
frequencies. 
k is an integer). 

(12 .15) ,  (13.15),  and (13.66) we have 

The amplitude at any frequency kvm is of the order  Pa& (where 

Let AIP be the amplitude of the fluctuations of frequency vg. From 

On the other hand, from relation (5 .3)  and the condition that the satellite 
must not touch the Earth's surface (rp>a,) ,  we have 

The factor e- is maximal for e = 213. Hence, inserting the numerical 
values for a and PE (see (12.11) and (13.15)),  we find 

A,P< --&a 4 m0.22 minwl3 sec. (13.68) 
3m 

This estimate is fairly accurate, since in reality the amplitude of the 

We now consider the fluctuations in the circuit starting time (the epoch 
long-period fluctuations in the nodical period may reach 10 sec. 

of nodal passage!. 
(n+l)-th circuit begins. Then 

Let t, be the epoch when the n-th circuit ends and the 

where f~ is the initial epoch, P h k = f h  - fn - ,  is the nodical period for the k-th 
circuit of revolution. Hence, making use of (13.66),  we have 

where OA is the argument of the perigee during the k-th circuit. Now, 
applying (13.22) and omitting te rms  of the order  @, we wri te  
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Putting h = d o  and substituting integration for summation, we have 

Seeing that 

we  have 

The first two terms in the right-hand side of this equality give the linear 
growth of the time t, with the circuit number n, while the third te rm 
represents long-period perturbations whose frequencies a re  multiples of 
the perigee movement frequency vW. 
are  proportional to the orbital period, and may be quite substantial. 

of the osculating elements at the node. 
show, by the same technique a s  for the period P ,  that 

The amplitudes of these perturbations 

In conclusion, we consider the question of long-period perturbations 
Making use of (13.63), we can 

(13.70) 

where at is the nodical value of the osculating semimajor axis o = 7112. 
This expression is accurate to terms of the order  a. However, unlike 
relations (13.66) and (13.69), its terms are  all functions of the eccentricity e 

M .  D. Kislik 1111 has shown that analogous expressions can be obtained 
for  the Osculating nodical values of the parameter p ,  the eccentricity e ,  
and the inclination i ,  All the elements characterizing the shape, the size, 
and the inclination of the orbit to the equatorial plane a re  therefore seen 
to vary with frequencies which a re  multiples of the perigee movement 
frequency vo. 
revolution of its perigee point, Po, therefore reduces to a certain 
displacement of the ascending node, i. e . ,  rotation of the orbit around the 
Earth’s spin axis, all other orbital parameters remaining constant. 

The net perturbation of the orbit observed after one complete 
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Chapter 14 

THE EFFECT OF A I R  DRAG ON MOTION OF 
ARTIFICIAL EARTH SATELLITES IN 
CIRCULAR A N D  NEARLY CIRCULAR ORBITS 

14.1. STATEMENT O F  THE PROBLEM 

The orbits of artificial Earth satellites mostly lie at great altitudes 
(over 150-200 km, excepting the injection and the reentry trajectories). 
At these heights, the a i r  is highly rarefied and offers but a negligible 
resistance to  the motion of the satellite. The effect of the aerodynamic 
drag, however, is distinctly secular and, although of small magnitude at 
any given time, it may eventually produce a substantial change in the 
principal parameters of motion of the space vehicle. 
illustrated by the example of circular orbits. 
the a i r  drag is constant to first  approximation, pointing along the tangent 
to the orbit, against the satellite's motion. 
constant perturbing deceleration To. 
perturbation will cause the satellite to move in a convolute spiral trajectory. 
The mean radius r m  of the orbit and the orbital period P will decrease 
monotonically, the longitudinal flight velocity u, increasing. 
r m  diminishes, the satellite sinks into progressively denser layers of the 
atmosphere, and the secular perturbation is enhanced. The flnal outcome 
of persistent a i r  drag is termination of satellite's life (i. e., the satellite 
falls on the ground). 

This chapter analyzes the effects of a i r  resistance on the motion of 
artificial Earth satellites in circular and nearly circular orbits. 
mainly concentrate on the resulting secular perturbations. 
of a i r  drag on satellites in elliptical orbit will be considered in the next 
chapter. 

This point is readily 
Indeed, in circular orbit, 

This force produces some 
As we have shown in Sec. 3.3, this 

As  the radius 

We 
The effects 

14.2. DRAG AND AIR DENSITY 

The drag R,  is directed against the velocity vector of the flying body 
relative to the air .  Its magnitude is given by 

(14.1) 

where c, is the dimensionless drag coefficient, F,,, the attack area (i. e., the 
area of the largest  section perpendicular to the relative velocity vector), 
p a i r  density, urel the magnitude of the relative velocity vector. 
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At great altitudes, where the free path of a i r  molecules is comparable 
with, o r  much greater than, the size of the satellite, the drag coefficient 
cx is virtually independent of the satellite figure: it is mainly determined 
by the mechanism of reflection of a i r  molecules from the surface of the 
satellite /18/.  
assumed to have the value 

The drag coefficient in the upper atmosphere is commonly 

C, e 2  -2.5. (14.2) 

The attack area F, can be found without difficulty for oriented satellites, 
For nonoriented i .  e . ,  satellites which maintain a constant attitude in orbit, 

satellites, the inertial trihedron is generally assumed to move at random, 
so that 

Ftot F,= 4. (14.3) 

This relation applies for convex satellites (whose surface is on one side 
of any tangent plane), if all attitudes a re  equiprobable / 1 8 / .  
is  also used for  the attack a rea  of a nonoriented satellite whose surface is 
not convex. In these cases, however, the real  surface is replaced with a 
corresponding convex surface. 

It should be remembered that (14.3) is suitable only for the calculation 
of some mean a i r  resistance, with the averaging interval much greater 
than the period of oscillation of the satellite axes. 
generally satisfied in the analysis of secular perturbations, Over parts 
of the orbit, however, the condition of attitude equiprobability may break 
down, and the parameters F, and R, fluctuate. 

In calculations of a i r  density, vertical motions a re  generally neglected, 
and one proceeds from the so-called e q u  a t i o n  of v e r t i c a 1 
e q u i l i b r i u m  of t h e  a t m o s p h e r e  

Formula (14.3) 

This condition is 

d p  = - gpdh. (14.4) 

Here dp is the change in a i r  pressure p as  the height changes by dh; g is 
the gravitational acceleration. 

by the Clapeyron equation 
The relation between the a i r  pressure p and the density p is expressed 

p = p M  
ROT ' (14.5) 

where M is the molecular weight of a i r ,  T its absolute kinetic temperature 
(i. e., the temperature a s  determined by the mean velocity of a i r  molecules 
at the given height), and 

Ro= 8.31 .107g .cm2/sec2 adeg *mol (14.5a) 

is the universal gas constant. 
Substituting (14.5) in (14.4), we find 

(14.6) 
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Integrating from some initial height h=ht to current height h and making use 
of (14.5), we find 

(14.7) 

where pi, pi, M j ,  and Ti are  the values of the corresponding parameters at 
the height h=hi. 

required for  the calculation of the function p ( h ) .  
and M depend on many different geophysical factors. 
where the artificial Earth satellites fly ( h >  180-200 km), the temperature 
and the molecular weight a r e  highly sensitive to the state of the upper 
atmosphere, which is in turn a function of solar  activity. At the relevant 
altitudes, the principal parameters of the upper atmosphere therefore 
depend, not only on height, but also on the geographical coordinates of 
the point, the time of day and year, and the general and local solar  activity. 
The periodic march of atmospheric parameters linked with the diurnal 
and the annual periods of the Earth, the Sun's period of rotation about i ts  
axis relative to the Sun-Earth line (some 27 days), and the solar activity 
cycle (some 11 years) is a characteristic manifestation of this dependence. 
The parameters of the upper atmosphere a re  often perturbed by local 
solar phenomena, which a re  quite unpredictable at present. 
of some 200-250km, the density of the atmosphere may vary by a s  much 
a s  *(30-50)% about the mean due to changes in insolation (as determined 
by the Earth's spin and its orbital motion). 
a temporary r ise  by a s  much a s  50% in a i r  density (persisting for a few 
days). In years of minimum solar  activity, the mean a i r  density at these 
altitudes is found to be 112-113 of the corresponding density in years of 
maximum activity, 
activity becomes more pronounced, and for heights above 500 km the a i r  
density may change by a s  much a s  a factor of 10, and even more, due to 
these factors. 

must be devised, which take int0,consideration the dependence of the 
principal atmospheric parameters on all the above factors, a s  well  a s  on 
height. There are ,  however, no satisfactory dynamic model atmospheres 
at present, since the relationships a re  much too complicated to be analyzed 
theoretically, and the experimental data a re  scant. The effect of a i r  drag 
on artificial Earth satellites is therefore commonly calculated for s t a t  i c 
(or s t e a d y - s t a t e )  m o d e l  a t m o s p h e r e s ,  which only allow for the 
height variation of the atmospheric parameters. The accuracy of these 
model atmospheres is often quite inadequate, and they should be adjusted 
with the aid of various experimental data. This adjustment is made by 
introducing various correction coefficients, which a re  generally derived 
from measurements of the elements of real  orbits. 

Appendix 1 lists the fundamental parameters of one of the latest static 
model atmospheres, the so-called CIRA 1961 (the COSPAR International 

The vertical variation of temperature T and molecular weight M is thus 
The actual values of T 

At great heights, 

For heights 

Solar phenomena may cause 

As the height increases, the dependence on solar 

It follows from the preceding that d y n a m i c  m o d e l  a t m o s p h e r e s  
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Reference Atmosphere for  1961) 1361. 
atmosphere is based on the results of measurements obtained in a period 
of maximum solar activity. 
density of the upper atmosphere may be several  times less than the CIRA 
1961 derived density 110, 14, 17, 20, 351. The density p in Appendix 1 is 
given in g/cm3. 
technical system of units, where P is determined in kg-sec2/m4. To pass 
from one system of units to another, we use the equality 

It should be noted that this reference 

In periods of minimum solar  activity, the 

Engineers, however, make their calculations in the 

1 kg .sec2/m4 = 9.807/1000 g/cm3. 

It follows from the preceding that the main factors which determine the 
drag Rx,  namely the drag coefficient c,, the effective attack a rea  F,(for 
nonoriented satellites), and the a i r  density p, cannot be determined with 
any accuracy at present. 
the motion of artificial Earth satellite is therefore impossible for  practical 
reasons, and the results of the calculations must be continually refined a s  
new measurements of the actual orbital elements become available. 

Exact prediction of the influence of a i r  drag on 

14.3. LOCAL MODEL ATMOSPHERES 

Local model atmospheres a re  generally used in adjusting the theoretical 
calculations to measurements of the actual orbital elements. These model 
atmospheres hold true in a limited range of heights for  a limited time only. 
The a i r  density p is determined from expressions of the form 

- 
P = P(h, 91) 9 i= 1 I 2, . . . , n, (14.8) 

where qi a re  some free parameters of the model atmosphere (adjustment 
parameters) which a re  obtained from the conditions of best fit between the 
theoretical and the experimental results. 

i s o t h e r m a l  a t m o s p h e r e )  is easily derived if the quantities g, M, 
and T in (14.7) a re  assumed to be constant. Taking the integral in the 
right-hand side of (14.7), we find 

One of the simplest model atmospheres of this kind (the so-called 

h-h i  
P = PI exP (- 7) 

where 

( 14.9) 

(14.10) 

The adjustment parameters of this local atmosphere a re  pi - the density 
of a i r  at some height h=h, ,  and the so-called d e n s i t y  s c a l e  h e i g h t ,  H. 
From the Clapeyron equation (14.5) we see that H is equal to the height of a 
hypothetical homogeneous column of constant density pi. where the pressure 
at  the altitude hWhi is equal to the pressure of the particular atmosphere 
being considered. 
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If a static model atmosphere p = i ( h )  is to approximate to the real  function 
p(h)  satisfactorily, its adjustment parameters should be selected from the 
conditions 

p"(hJ=p(hJ, d; (14.11) 

These conditions a re  satisfied for 

(14.12) 

We introduce the " m o l e c u l a r "  t e m p e r a t u r e  

T'=T-$ ,  M (14.13) 

where M,= 28.97 g/mol is the molecular weight of a i r  near the ground. 
Expression (14.7) takes the form 

(14.14) 

where R is the specific gas constant of a i r ,  defined by 

R=-%=287m2/deg.sec2, (14.15) MO 

and T i  is the value of the temperature T'at the height h = h i .  
From (14.14) it follows that 

A?.=-- dh ;, (%+$). 
Hence, making use of (14.12), we find 

(14.16) 

d T' For  (hi) =O, this formula coincides with equality (14.10). 

Relations (14.12) and (14.16) define an isothermal atmosphere which 
provides the best approximation to the actual variation of air density near 
a given height h = h i .  From (14.16), the scale height H can be determined 
a s  a function of the height h for any static model atmosphere. 
corresponding scale height H characterizes the rate of vertical decrease 
of the a i r  density p. 
we find that a s  the height h increases by H, the density p decreases 
approximately by a factor of eE2.718. 

Figure 14.1 and Appendix 2 illustrate the function H ( h )  for  CIRA 1961. 
We see  from the graph and the table that for h<120km, the parameter H 
is between 5 and lOkrn, which corresponds to a sharp drop of a i r  density 
with height. 

The 

Assuming H to be constant in the interval h i 4 h < h i + H ,  

For heights of from 120 to 200 km, the rate of decrease in 
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a i r  density levels out, H increasing to 30-4Okm. For h>ZOOkm, H slowly 
increases, and for  h=800 km, H =  115km. We see from the table in 
Appendix 1 that this reduction in the rate of decrease of a i r  density and the 
corresponding increase in H are  related to the increase in temperature and 
the decrease in the molecular weight of a i r  at high altitudes. 

FIGURE 14.1. Density scale height Hvs. the height h above 
the Earth's surface for CIRA 1961. 

We now estimate the e r r o r s  introduced by the isothermal model 
atmosphere. 
T' with height is much greater than the corresponding change in the 
gravitational acceleration g, we  shall assume that the latter is constant 
( a  variable g w i l l  not affect the results of our analysis in a noticeable 
degree). We moreover assume that in the relevant altitude range the 
"molecular" temperature Z" is a linear function of the height h:  

Seeing that the relative change in the "molecular" temperature 

T' = T ; + u ( ~  - hl), (14.17) 

where T; is the value of the temperature T' at the height hi, and a a 
coefficient characterizing the rate of vertical growth of T'. Clearly, 

dT' a = -  
dh ' 

Substituting (14.17) in (14.14), we find 

(14.18) 

(14.19) 

It is easily seen that for a d 0  this expression gives the isothermal 
atmosphere (14.9). Indeed, from (14.16) and (14.18) it follows that in 
this case 

(14.20) 
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Substituting the second equality in (14.19), we find 

Now, since 

we have 

I 

lim (1 +E): = e, 
c-+o 

l imp=p,exp I-+). d - h  
a+@ 

From expressions (14.9), 
introduced by the isothermal 

(14.19), and (14.20), the relative e r r o r  
atmosphere is 

PI ['+ 
-(l+f) 

= ( I  +%I - e x p  [-e ( I  t &)I I (14.21) 

where 

(14.22) 

Note that H; is the height increment corresponding to a two-fold increase 
in the initial temperature Ti, as extrapolated from (14.17). 

FIGURE 14.2. Relative error 6p introduced by the isothermal model 
dT' atmosphere in air density determination vs. & for various a = -. d h  
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e 14.2 plots the relative e r r o r  6 p  of the  isothermal atmosphere a s  
n of E for  various temperature gradients a ( i n  deglkm). In 

calculations of the function 6p(E), the acceleration g was taken equal to 
its mean value at the height of 200 km, g,= 9.22 m/sec2. 
these graphs, we must remember that for a>O, g>O correspond to h>hl 
and E<O to h<hl. Conversely, for  a<O, g>O correspond to h<hl and E<O 
to h>h,. We see from the graphs that at the heights h>hl, for  temperature 
gradients a in the interval - 5 deg/km<u<20 deg/km, the absolute value 

of the relative e r r o r  l6pl =Id1 does not exceed 10%. The e r r o r  16pI 
PI 

decreases with decreasing la]. For h<hl, the e r r o r  I8pI sharply increases 
with increasing \a\.  The isothermal atmosphere is therefore adequate for 
"upward" extrapolation of the rea l  atmosphere (to heights h 2 h l ) .  
"Downward'l extrapolation (to heights h<hl ) ,  however, involves gross e r rors .  
If the isothermal scale atmosphere is applied in assessing the air drag on 
artificial Earth satellites, the parameter hl is generally taken a s  the height 
of the lowest point in orbit. 
relative e r r o r  6 p i s  inseparably connected with i ts  definition (14.21). If 
the e r r o r  is defined a s  

When examining 

Note that the foregoing discussion of the 

- 
40r-P-P 

P '  

i ts  behavior will  be entirely different (it w i l l  increase monotonically for 
extrapolation in either direction). 

real  atmosphere is provided by a local model where the "molecular" 
temperature T'varies linearly as  in (14.17). Making use of (14.19), (14.20), 
and (14.22), we write for the a i r  density in this model atmosphere 

The next higher approximation (after the isothermal atmosphere) to the 

(14.23) 

As we have previously shown, for a+O ( H T + o o ) ,  expression (14.23) 
We come to the same conclusion if (14.9) and (14.23) reduces to (14.9). 

a r e  expanded in powers of - H~ and +: h -  hj h - h  

H 

1 h - h  a 
31 ( H ' ) "']' -- - 

(14.24) 

We see from the expansions that the functions p"(h) and p(h)  coincide to te rms  
of the f i rs t  order: differences a r e  observed in te rms  of second and higher 
orders  only. The parameter H in both model atmospheres should therefore 
be determined from the equality (14. ll), while H,is obtained from the condition 

(14.25) 

235 



Expression (14.23), unlike (14.9), has three free parameters (p, H and HA, 
and not two; the adjustment with the real  atmosphere can therefore be 

carried out to terms of the order  (+) . 
In previous integration of (14.14), we neglected the variability of the 

gravitational acceleration g. 
simplification can be eliminated if the a i r  density p is determined, not 
a s  a function of the height h above the Earth 's  surface, but as a function 
of the so-called g e o p o t e n t i a l  h e i g h t  

h - h  2 

The inaccuracy introduced by this 

(14.26) 

where R E =  6371 km is the mean radius of the Earth. 
Expression (1.2) for the gravitational acceleration can be written a s  

{ 14.27) 

where g0%9.807 m/sec2 is the mean gravitational acceleration on the Earth 's  
surface. Now, differentiating (14.26), we find 

Substituting in (14,14), we find 

(14.27a) 

where @I is the value of @ at the height hi. 
Thus, when UJ is substituted for h as  the independent variable, all the 

pre-,rious arguments pertaining to local model atmospheres remain in force. 
The variable g is replaced with the constant go, so that the uncertainty 
introduced by the variation of g is eliminated (the uncertainty contributed 
by the approximate relation (14.27) is negligible). 
that for h<&, the difference between h and UJ is comparatively small. 
It is therefore often desirable to retain the height h as the independent 
variable of local model atmospheres, substituting for the variable g some 
constant mean value in the relevant layer. 

From (14.26) it follows 

14.4. THE EFFECT OF AIR DRAG 
ON MOTION IN CIRCULARORBIT 

As we have previously observed, the magnitude and the direction of 
the drag force R, are a function of the satellite's velocity relative to the 
air ,  wrelr which is defined by the equality 

(14.28) 

236 



where w is the velocity of the satellite in some inertial frame, and vl the 
velocity of a i r  in the same frame. 

If the attraction of the Sun, the Moon, and the planets is ignored, a 
system of nonrotating axes with its origin at the Earth's center may be 
assumed as  the inertial frame. 
is determined, on the one hand, by its rotation with the Earth and, on the 
other, by various local winds. 
is fairly uncertain, their influence on the motion of artificial Earth satellites 
is ignored. As regards the atmospheric rotation, it is obvious that the 
lower layers a re  completely entrained by the Earth. We may further 
assume that starting with some altitude, the atmosphere virtually does 
not rotate with the Earth (otherwise, the velocity v i  should increase 
monotonically with height). The rotation of the intermediate layers of 
the upper atmosphere is undecided. Anyhow, the magnitude of the vector 
ai is not greater  than the velocity of the completely entrained atmosphere. 
At heights of 1000 km (where the a i r  drag on satellites is still noticeable), 
this velocity does not exceed 540 m/sec,  whereas the circular velocity 
at that height is close to 7350 m/sec.  
of the velocity vector wI is thus no more than 7.5% of the magnitude of 
the satellite velocity w .  
shall therefore take wrelz w, 
will be considered in the following. 

Sec. 1.1) is directed at right angles to the radius-vector joining the 
artificial satellite with the Earth 's  center, i. e., against the acceleration 
T (see Figure 2.1). Making use of (1.4) and (14.1), we  may write the 
following expression for the corresponding perturbing acceleration at 
the height h:  

The motion of air relative to this f rame 

Since the question of winds at high altitudes 

In circular motion, the magnitude 

In our preliminary analysis of drag effects we 
The contribution from atmospheric rotation 

With this simplification, the drag R, in circular orbit (as treated in 

(14.29) 

where m is the satellite's mass ,  RE= 6371 km the mean radius of the Earth, 
r = R E  + h  the radius of the circular orbit, c a coefficient defined by 

In particular, for a spherical satellite 

(14.30) 

(14.31) 

where D is the satellite's diameter in meters ,  G=mg, its weight in kg, 
y mean specific gravity of the satellite defined by 

According to the latest data for  the recent American satellites (excluding 
the Echo-series satellites), the mean specific gravity y ranges between 
0.1 and 1 kg/dm3, the diameter D between 0.5 and 5m, the drag coefficient, c,, 
a s  mentioned previously, between 2 and 2.5. 
satellites may therefore range between 0.003 and 0.4 m3/kg .sec2. 

The coefficient C of spherical 
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Table 14.1 lists the magnitude OP the acceleration T for  various heights h 
of circular orbit. 
c = 0.1 m3/kg .sec2 (i. e., for a comparatively small light-weight satellite), 
making use of the a i r  densities P from the appendix. The table also gives 
the drag force R,  per  square meter of attack section F,(for c,= 2.4). 

The accelerations were computed from (14.29) for 

Acceleration. 
I f 1  

m/sec2 

3.0.10-' 
1.5 .lo+ 
1.1 
2.2 

2.0 .io+ 
6.3 .lod5 

TABLE 14.1 

Height 
h 

km 

Drag per 
unit area, 

Rxlpm 

kg/mz 

3.6 
1.8 .lo-' 
i.3.10-~ 
2.1 .ir8 

z.4.10-~ 
1.6 .lo-' 

100 
120 
150 
200 
250 
300 

Height, 
h 

km 

350 
400 
500 
600 
IO0 
800 

Acceleration 
1i-l 

m/sec2 

7.4 .lo- 
3.1 
6.9 .lo-' 

6.8 .lo-' 
2.6 .lo-' 

2.0 .io-' 

Drag per 
unit area, 

kg/m2 

Rr/Fm 

8.9 
3.1 . lo" 
8.3 
2.4 .IOW6 
8.2 -lo-' 
3.1 .lo-' 

We see from the table that at the relevant heights ( h >  100-150 km), 
the acceleration produced by the drag force is small  in comparison with 
the gravitational acceleration. The perturbations due to a i r  drag a re  
therefore small, and they can be analyzed by the method of linearized 
equations of motion, described in Chapter 2 and 3 for  circular orbits. 

From (14.29) it follows that in unperturbed circular orbit ( rsconst ) ,  
the a i r  drag is constant. In other words, 

T=Tu=const. 

In our case, the satellite therefore experiences a certain constant 
deceleration. 
of Sec. 3.3. 
monotonic reduction in flight height and in orbital period, i. e.,  the 
satellite will trace a convolute spiral, moving with an ever increasing 
velocity. * 

The resulting slow-down can be analyzed from the results 
As we have shown in that section, this perturbation causes a 

All the resulting perturbations a re  proportional to 5, where gm is the 
gm 

gravitational acceleration at  the relevant height. 
follows that 

From f 1.2) and ( 14 -29) it 

3 = - cpr = -cp (RE+ h). 
gm 

(14.32) 

Applying (3.7), (3.13), and (14.32), we obtain for the change in orbital 
period per circuit 

(14.33) 12n~ W =  --cpr"b or 2 = - 6 n c p r ,  vi P 

* This seemingly paradoxical effect of "acceleration" by air drag is explained in Sec. 3.3. 
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r3D 
fi 

where P=2n- is the period of revolution in unperturbed orbit. 

Making use of (3.12) and (3.14), we obtain expressions for the secular 
variations of the radius and the longitudinal flight velocity during one 
circuit, Br and &vu, and for the displacement 61 along the orbit corresponding 
to the variation 6 P  of the orbital period: 

(14.34) 

where w = fi is the velocity in unperturbed motion. 

Satellite moving in perturbed orbit dips into atmospheric layers of 
progressively increasing density a s  the flight height h z - r  - RE decreases. 
This in turn leads to an increase in ]TI, 16P1, 6 1 , l b r (  and 6%. i. e,, the 
orbital perturbations grow monotonically. However, for small  Br(which 
is generally the case in practice), the variation of 6P,61, 6r, and 6u,during 
a limited period can be neglected, and some mean values can be substituted. 
Making use of (3.8), (3.12), and (3.13) we then write expressions for the 
corresponding secular perturbations (AP)sec. {Al)seo (Ar)sec, (AVu)sec of the 
orbital elements in n circuits, and also for the rate of secular radial 
displacement ( A Z J ~ ) ~ ~ ~ :  

(1 4.3 5) 

In these formulas, the circuit number n runs from 1, and not from 0. 
The increments (Al)sec, (Ar)sec, and (AVu)sec therefore give the corresponding 
perturbations at the end of the n-th circuit, while (AP)sec is the perturbation 
of the orbital period during the n-th circuit (the time between the starting 
points of the (n+l)-th and n-th circuits). For n= 1, 

bP bI 
( W s e c = x *  (AOsec= 

(Ar)sec=6f- (Avu)sec=bu* 

Air drag produces periodic, a s  well as secular, perturbations of circular 
The peak magnitudes of the periodic perturbations can be estimated orbit. 

from (3.11)* (14.32), and (14.33), which give 

(14.36) 
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We see  from the above relations that the perturbation along the orbit 
is the largest. Indeed, from (14.34) and (14.36) we have 

l b r l  

km 

132 

9.2 

2.0 

5.8 .lo-' 

1.9 .lo-' 

1.1.10-2 

3.0 .lo-' 

7.1 

2.1 lo-' 

1.6.10-4 

3.0 .lo-' 

(14.37) 

- 

IArlrnax 

km 

21 

1.5 

3.2 . lo-' 

9.2 .lo-' 

3.0 .lo-' 

1.1.10-2 

4.8 .lo-' 

1.1 .io-: 

3.4.10-' 

1.2.10-' 

4.8 .lo-' 

It should be kept in mind that the secular perturbation along the orbit, 
(Al),,,, is proportional to the square of the circuit number 11, and the secular 
displacement along the radius, (Ar),ec, varies as the first power of n ;  the 
maximum periodic perturbations 1ALllniax and lArlmnx, however, remain 
constant ( i f  the increase of a i r  drag resulting from the secular orbit 
contraction is neglected). 

6P Table 14.2 lists the values of 1-p-I. I S P I ,  61. I s r l ,  IArlntax. {Allma=,  ISV,(, 

and ( ( A U , . ) , ~ ~ ~ ,  calculatedforthe case c=  0.1 m3/kg. sec2 and 120 km Q h 4 8 0 0  km. 

TABLE 14.2 

Height, 
h 

km 

120 

150 

200 

250 

300 

350 

400 

500 

600 

IO0 

800 

Perturbations of circular orblt due to air drag for e= 0.1 m3 /k-sec2 

l%l 

3.0 .lo-' 

2.1.10-3 

1.3 

4.3.10-~ 

1.6 

4.6.10-4 

6.6 

1.5 .lo-' 

4.6 .lo-' 

1.6. io-' 

6.3 .lo-* 

sec 

L58 

11 

2.4 

7.0 -10-1 

2.3 .lo-' 

8.7 .lo-' 

3.1 .lo-' 

8.6 .lo-' 

2.1 

9.6 .lo" 

3.8.10" 

61 

km 

240 

87 

19 

5.5 

1.8 

6.7 .lo-' 

2.8 .lo-' 

6.1 .lo-' 

2.0.10-2 

1.2.10-~ 

2.9 .lo-' 

I ~ m a x  

km 

4 

5.9 

1.3 

3.1 .lo-' 

1.2 .lo-' 

4.5.10-2 

1.9.10-2 

4.5 .lo-' 

1.4.10-' 

4.9.10-4 

1.9 

1 %  I 
m/sec 

I9 

5.5 ' 

1.2 

3.4 .lo-' 

1.1 .lo-' 

4.1 .lo-' 

1.1.10-2 

3.9 .io-' 

1.2 .io-' 

4.0 

1.6 

m/sec 

25 

1.8 

3.1 .lo-' 

1.1 .lo-' 

3.5.10-2 

1.3 . lo-' 
5.4 

1.3 . lo-' 
3.1 

1.3. 

5.0 

We see from the table that the effect of a i r  drag on artificial Earth 
satellites sharply drops with increasing flight altitude. The periodic 
perturbations of the orbit virtually vanish at  heights of some 400 km. 
The influence of secular perturbations can be ignored in predicting the 
motion of the satellite several circuits in advance at altitudes of 600 -700 km 
and higher. In long-range forecasting, however, drag forces a re  by no 
means negligible even at greater altitudes. Fo r  example, at heights of 
800 km, the secular displacement along the orbit is 61= 3 m per circuit. 
From (14.35) we thus have (Al)sec= 1500km in 1000 circuits. 
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14.5. HEIGHT OF CIRCULAR ORBIT 
AS A FUNCTION OF AIR DRAG 

We see from Table 14.2 that a s  the flight height decreases, the effects 
of a i r  drag become progressively more pronounced. The linear variation 
of the orbital period P and the radius r,  and the quadratic variation of the 
displacement A1 along the orbit with the circuit number n (see (14.35)) 
break down, and the perturbations a re  enhanced. 
the perturbing influence of the atmosphere is so large that the satellite 
cannot orbit. 
is Idhi  = 
already in the course of its f i rs t  orbital circuit. 
drag forces is to make the satellite fall to the Earth's surface. 
therefore important to establish the variation of the secular perturbations 
in the elements of circular orbit due to drag forces and to calculate the 
lifetime of satellites. 

of circular orbit a r e  uniquely defined by flight height h = r  - R E .  
therefore consider secular perturbations in flight height only, which a re  
given by 

Starting with some height, 

For  h= 120 km, the reduction in flight height per one circuit 
132 km (see Table 14.2), i. e., the satellite hits the ground 

The final outcome of 
It is 

As we have shown in Sec. 1.1, all the parameters of motion in the plane 
We shall 

dh _- dt - (Avr ) sec=-  ~ C P  f i r *  

where (Av,)sec is the rate of secular displacement along the radius (see 
(14.35)). Hence, introducing the relative time 

we have 

(14.38) 

(14.39) 

If the a i r  density p is calculated for a static model atmosphere (i. e., 
p is a function of flight height h only), integration of (14.39) gives 

7 -TI = F (h1) - F (h), (14.40) 

where zd and z are  the relative times corresponding to the initial height hi 
and the current height h,  F(h) is a function of height defined by 

h 
1 dh F(h)=-- (14.41) 

The function F(h)  is clearly determined by the particular model atmosphere 
used. 
the time required for the satellite to drop from the height hi to h :  

If this function is known, then, from (14.38) and (14.40), we find 

(14.42) 

We now proceed to derive the function F(h) for  different model 
atmospheres. The quantity fi= fm entering the right-hand side of 
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(14.41) varies with the height h much more slowly than the density function 
p(h).  In our approximate calculations of F(h) we therefore ignore the 
var 
use othermal at 

where PO is a i r  density at h=O. 

rapidly with the height h. The f i rs t  t e rm in the right-hand side of this 
equality is much greater  than the second term,  and we therefore wr i t e  

We see from this expression that F ( 0 )  =O and that this function increases 

H exp (+) €I F(h)  e =- 
2 P l v - F  2P f i  ' (14.44) 

Making use of (14.23), we similarly find for 
constant 'tmolecularll temperature gradient: 

an atmosphere with a 

On the other hand, f rom (14.17), (14.22), and (14.23), we have 

Hence 

(14.46) 

where T', Ti, and Ti a re  the "molecular" temperatures at the heights 
h, hi, and ho=O, respectively. Neglecting the second te rm in the right- 
hand side of this relation, we wr i t e  

m, and T'sconst, ons (14.46) and (14.47) reduce to 
nd (14.44) for  isothermal atmosphere. expressions (14 

r which the parameters pi. H, and HTare determined in 
this model can always be made equal to the height h for which the function 
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F(h) is computed, Then T'= Ti,  and (14.47) takes the form 

( 14.48) 

The parameters H and HT in the right-hand side a re  functions of the 
height h.  From (14.20) and (14.22) it follows that these functions a re  
given by 

Hence, taking a and g to be constant, and applying (14.18), we write 

Expression (14.48) takes the form 

(14.48a) 

( 14.49) 

The parameters of the upper atmosphere a re  sometimes determined 
making use of multilayer models, each of which is characterized by a 
constant "molecular" temperature gradient (some of these layers may 
actually be isothermal). 
model 

Applying (14.41) and (14.47), we wr i t e  for this 

n-I  

i=1 
F(h)= z IF, (k+l) - Fi (h,ll + F" (A)  - Fn ( 4 I h  (14.50) 

where Fi(h)  is the function F ( h )  in some i-th layer, defined by (14.47), hi 
and hi+i a re  the base and the summit heights of the i-th layer, n is the 
number of the layer corresponding to the current height h. 

for CIRA 1961. 
that when they a re  divided by the coefficient e ,  which is expressed in 
m3/kg.sec2, the quotient gives the flight time in mean solar days ( s .d . ) .  

Applying the data from Appendix 2 and relations (14.40) and (14.42), 
we can find the height h as a function of z and f, Figures 14.3 and 14.4 
plot the functions h(r )  for  different initial heights hi (hl= 200 and 500km). 
We see from the graphs that the rate of orbit contraction gradually 
increases in time. 

expressions. 

examining the figures in Table 14.3, which gives the ratios 

where F(h)  is the value from Appendix 2,  F ( h )  and F ( h )  are the approximate 
values calculated from (14.44) and (14.49). The values of p(h)  and H ( h )  

Appendix 2 l is ts  the values of the function F(h) calculated from (14.4 1) 
The values of F ( h )  a re  given in (m3/kg.sec2)Xs.d.. so 

Finally, the satellite sinks down and falls on the ground. 
The functions F ( h )  can be conveniently determined from the foregoing 

The accuracy of these expressions can be assessed by 

and Fo, SO 
F (h)  
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s. d. 

h. 
km 

150 
200 
250 
300 
350 
400 
450 

FIGURE 14.3. Flight height h vs. relative time 7 for initial 
circular-orbit height hi= 200 km. 

E -  p' ha  F F 
P F km P 

1.44 0.98 500 1.13 0.98 
1.25 1.02 550 1.14 0.99 
1.12 1.02 600 1.14 0.99 
1.10 1.00 650 1.11 0.99 
1.11 1.00 700 1.08 1.01 
1.12 0.99 750 1.11 1.00 
1.13 0.99 860 1.14 0.97 
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a r e  taken from Appendices 1 and 2; the derivative 

the mean 

is replaced with 

H (h)-H(h-A) 
A 

where A is a parameter so chosen that the satellite moves in the height 
range from h to h - A  during most of i ts  lifetime. 
be equivalent to the condition F ( h )  >> F ( h  - A ) .  
heights, the function H ( h )  should be a s  close to linear a s  possible (see 
Figure 14.1). 
values of A :  

This is easily seen to 
Moreover, between these 

In view of these considerations, we have chosen the following 

for  300 km<<h,<8OO km A = l o O k m ,  

for h=250 km A=50 km, 
for h=2W km A = 4 0  km-, 
for h=150km A = 2 0  km. 

We see from this table that the relative e r r o r  in F ( h )  as  calculated from 
(14.49) does not exceed 3%. 
that all the numerical data a re  highly approximate. 
slightly less  accurate: the values of F ( h )  a re  too high on account of the 
monotonic growth of H in the entire range of flight heights h .  The last 
expression can be used in approximate estimates if  no reliable information 
is available on the derivativedH. 

This accuracy is quite satisfactory considering 
Formula (14.44) is 

dh 

14.6. 
VALUES OF CIRCULAR-ORBIT ELEMENTS 

SATELLITE LIFETIME AND THE CRITICAL 

From (14.41) we see that toward the end of the satellite lifetime ( a s  h-*O), 
Hence, applying (14.42), w e  find an expression for the total F ( h )  4 0 .  

lifetime of a satellite in circular orbit: 

(14.51) 

where ha is the initial flight height. 
we find for an atmosphere with constant temperature gradient 

In particular, from (14.35) and (14.47), - 

where ro, pol Ti, ~ ( A v r ) s e c ~ B  a re  the values of the corresponding quantities at 
the height h = hg. 

For  isothermal atmosphere ( Ti= Ti ,  H, = m ) ,  we have 

(14.53) 
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Making use of (5.36) and (14.33), we write for  (14.51) 

where 

(14.54) 

(14.55) 

and Poand 8P0 a re  the initial values of the orbital period P and of its change 
during one circuit 8P.  Making use of (14.44) and (14.49), we find 

-- !! for  isothermal 1 I 
atmosphere, 

perature-gradient 
;$+ for constant tem- 

(14.56) 

I atmosphere. 

d H  The derivative 

found from ( 14.48a). 
Expression (14.54) is convenient for calculating the lifetime of real  

satellites whose Po, 6Po,  and ho a re  known with fair accuracy. Using this 
formula, we avoid the e r r o r s  connected with the uncertainty in c and p, 
but there a re  st i l l  the inaccuracies due to the deviation of the actual k ( h )  
from the calculated figures. 

in the right-hand side of the last  expression can be 

Appendix 2 l ists  the values of k ( h )  calculated from (14.55) for CIRA 1961, 
From (14.51), (14.52), and (14.53) it follows that the lifetime tlifein 

It rapidly increases .with 
circular orbit (for a given static model atmosphere) is a function of the 
initial flight altitude ho and the coefficient c. 
increasing ho and decreasing c.  

for small  changes in c and ho. 
In some cases,  we a r e  interested in the variations of lifetime, Atlife. 

We have the obvious variational equation 

where Ac and Aho are small  increments in the corresponding parameters. 
From (14.41) and (14.51), we have 

where q ( h )  is a function of height: 

1 cp(h)=-. ZPG 
The values of this function for various heights a r e  given in Appendix 2. 

existence. These conditions correspond to some c r i t  i c a 1 e 1 e m e n t  s 
of the so-called cri t ical  orbit (minimum allowed flight altitude hait, 

We now determine the conditions under which the satellite ceases its 
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minimum orbital period Pcrit, maximum flight velocity WCrit, etc. ). 
c r i t  i c a 1 o r b i t  we mean an orbit in which the satellite completes just 
one revolution around the Earth, so that 

By 

Pait =flife 

Substituting (1.5) and (14.51), we obtain an equality for the critical height: 

2n (~E+hcr i t )% - F ~ c r i t )  
6 E 

Hence it follows that for a given atmosphere, the critical height h a i t i s  a 
function of the coefficient c .  If hcrir is known, the other critical elements 
can be calculated fairly simply from the formulas of Chapter 1. 

Figure 14.5 plots the critical flight altitude hcrit  and the critical orbital 
period Pcr i t  a s  a function of the coefficient c for  the previously introduced 
model atmosphere. 
5 c 5 1 .O m3/kg. see'), the parameters hcrit and Pcri t  remain fairly constant 
(108 k m s h c r i t  5 188 km, 86 .5mins  Pait 588 .1  min). 
herit and &it increase with c .  

As c varies between wide limits (0.001 m3/kg.sec2= 

Here the parameters 

FIGURE 14.5. Critical flight altitude k r i t  and critical orbital 
period Pcrit vs. the coefficient c for motion in circular orbit. 

Comparison of the graphs in Figures 14.1 and 14.5 shows that satellites 
cannot exist at altitudes of less than 110-120 kmbecause at theseheights H 
sharply decreases, i. e., the rateof changeof air densitywith height becomes 
very steep. Heights of some 110-120 km are therefore the minimum allowed 
flight altitudes of modern artificial Earth satellites, whose minimum orbital 
period is 86.5-86.7min. 

The plots of hcri t  and P d t  vs. c in Figure 14.5 do not change noticeably 
if a different model atmosphere is introduced. This is so because any 
change in a i r  density is equivalent to a certain change in the coefficient e, 
and P,it and hcrit a re  insensitive to these changes. 
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14.7. 
ON MOTION IN CIRCULAR ORBIT 

THE EFFECT OF ATMOSPHERIC ROTATION 

In our analysis of atmospheric rotation, we shall proceed from relation 
(14.28). 
from west to east, and its magnitude is given by 

The vector vi- the velocity of a i r  in an inertial frame - points 

vi= kQr cos B, (14.57) 

where 52 is the angular velocity of rotation of the Earth, r the distance from 
the Earth's center to the sat  B geocentric latitude, and k a coefficient 
characterizing the degree of 
This coefficient varies between the limits 

inment of the atmosphere by the Earth. 

O , ( k ( l .  (14.58) 

We determine the projections of the satellite's relative velocity on the 
continuation of the radius-vector r from the Earth 's  center to the satellite, 
on the normal u to this radius-vector in the orbital plane, and on the normal 

I" 

/X 

FIGURE 14.6. Determining satellite's velocity cornponenu 
relative to rotating atmosphere. 

E to the orbital plane (Drug constitute a right-hand triad). Making use of 
Figure 14.6, we can derive expressions for the projections vi,, and  VI^ of 
the relative a i r  velocity vi on the corresponding directions. Substituting 
(14.57) in (14.28), we find 

(14.59) 

where orel,, Vre lu ,  Vre16 and vr, u,are the corresponding projections of the 
rs Vrel and v ;  A is the azimuth of the line Du.  

248 



Consider a spherical right triangle DQD' ( O Q  is the line of nodes, OD' 
is the intersection line of the meridional plane through the satellite D 
with the equatorial plane). In this triangle 

@=a. 6 ? D r = B ,  L D S ) , D ' - i ,  

L f ) , D D ' = A ,  L S & D ' D = G .  

Hence 
cos i = sin A cos B, 
cos L 
COS A = 

COS B COS A = sin i cos u. 

D'D a01 - cos icos A +  sin isin Acosu,  
sin i sin A cos ~1 

cosi ' 

Substituting the f i rs t  and the fourth of these relations in (14.59), we find 

I '7"relr = '% 
vrelu = vu - kSlr cos i .  
vrelt = kQr sin i cos u. 

Hence an expression for the magnitude of the vector wrel: 

(14.60) 

vrel = v v j +  (v,~ - kQr cos i)2 + k2Q2rZ sinz i cosa u = 

(14.61) = v v 2  - 2v,kQr cos i + k%2r2( 1 - sina i sin2 u) . 
Let S, T, W be the projections of the perturbing acceleration produced by 

a i r  drag on the directions Dr, Du and 06. From (14.1) and (14.30) we have 

(14.62) 

The quantities vrel, V r e l n  Urelu, and t a re  determined from (14.60) and 
(14.61). Fo r  circular orbit (v,=.O, V , ~ - V = W ) ,  

s=o, 
T = - cp(w - kQr cos i) x 

t X vw2 - 2wkQr cos i + kQ2r2 (1 - sin2 i sin2 u), 

W=- cpk& sin i cos U X  
(14.63) 

Calculations show that as the flight altitude h = r  - R E  varies between 
the limits 

120 km< h 1000 km (14.64) 

Qr ~r'Ja the parameter ye- fi  varies between the limits 

0.06 < $ < 0.073. (14.65) 
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Since this ratio is small, we write (14.63)  to te rms  of the first order  of 
smallness a s  

I T s - c p d ( 1  - 2k$cos i ) .  
Elt W w - cpw2k -;t sin i cos u. 

(14 .66)  

The rotation of the upper atmosphere thus produces perturbing 
accelerations not only along the orbit, but also at right angles to the 
orbital plane. 

that if atmospheric rotation is introduced, the perturbing acceleration T 

directed along the orbit varies in proportion to @ = I  -2k$cosi, which is 

constant for a given orbit. 
flight altitudes h< 1000 km, this factor may vary between the limits 

Comparison of the first expression in (14.66)  with relation (14.29)  shows 

From (14.58)  and (14 .65)  it follows that for  

0.854<@< 1.146. (14 .67)  

Previously considered perturbations of circular orbit a re  clearly 
proportional to this factor, while the lifetime tGfe  is inversely proportional 
to 0. West-east flight ( 0  < i < n / 2 )  corresponds to a decrease in the 
perturbing influence of drag forces ( @ < I ) ,  while east-west flight 
( n / 2  < i Q  n) involves an increase in these perturbations ( @ > l ) .  

As we have previously observed, the total secular perturbations 
attributable to a i r  drag eventually grow to a substantial level. The 
variations in these perturbations when multiplied by the factor 4, may 
also be large. In practice, however, it must be kept in mind that the 
effect introduced by this factor may be offset by changes in the coefficient 
c o r  in a i r  density p. 
quantities is not high, we a re  unable at present to differentiate between 
the e r r o r s  introduced by incorrect approximation to atmospheric rotation 
and e r r o r s  attributable to the uncertainty in the parameters c and p. The 
atmospheric entrainment coefficient k therefore cannot be determined from 
measurements of perturbations in the orbital plane (this problem could 
be solved, however, i f  two identical satellites were launched simultaneously 
in westerly and easterly directions). 

Let us now consider the-contribution from the acceleration W which is 
normal to the orbital plane. 
is proportional to cosu,  i.e., varies periodically during the period of 
satellite's revolution in orbit. We have shown in See. 3.7 that, aside 
from periodic perturbations (which a re  ignored a s  being small), there is 
also secular rotation of the orbital plane in this case. 
and (14.66) ,  seeing that cosz=sin [ a--(-z/2)] ,  we find that the orbital 
plane rotates about the axis 

Since the accuracy of the numerical data for these 

From (14.66)  we see  that this acceleration 

From (3 .34 ) ,  (3 .35) ,  

ui = 0, (14.68)  

i. e., around the line of nodes. 
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The angle of rotation per  one circuit, i. e., the angle 9 fo r  ~ - 2 n ,  i s  
obtained from the expression 

(14.69) 

Making use of (1.4), (9.53), (14.33), and (14.68), we  find that the orbit 's 
node remains fixed ( b q = O ) ,  while the inclination changes by 

@r kQ sln 1 bi = bJ, = - ncpr 7 sin 1 - ~ z j ; " b P ,  ( 14.70) 

where 8 P  is the change per  circuit in the orbital period, calculated ignoring 
atmospheric rotation ( i f  atmospheric rotation is taken into consideration, a 

correction of the order  (Fr is introduced in the right-hand side of (14.70), 

which is neglected in our analysis). 
From (14.70) it follows that for  any inclination i (which, a s  we have 

observed in Sec. 1.2, may vary from 0 to n), 8 r 4 0 .  In other words, 
atmospheric rotation displaces the orbital plane toward a position with 
i S 0 ,  i. e.,  the orbit approaches the equatorial plane with the satellite 
traveling from west to east. The rotation of the orbit in this direction, 
however, is extremely slow. For  the data in Table 14.2, the maximum 
inclination decrement per  one circuit (for i = n / 2  and k =  1) varies from 
lbi1=l",5.10'4 a t  h=800km to Ibil-1"at h=200km and Ibilc?r1".5at h =  150km. 
We see that in the great majority of cases, b i q l "  . 
Ai during the satellite's lifetime. 
in the right-hand side of (14.70) a re  constant, substituting their mean 
values i, and km. 
lifetime, we find 

Relation (14.70) can be applied to estimate the total inclination increment 
We assume that the parameters i and k 

Summing over the variations 6i and gpduringthesatellite's 

(14.71) 

where PO and Pmit are  the initial and the critical periods of revolution. 

Calculations with (14.71) show that the inclination of the satellite's orbit 
during its entire lifetime (which is several years  long in this case) is at 
most some 3'. 

It follows from the preceding that the effect of atmospheric rotation on 
the motion of artificial Earth satellites is very difficult to detect in practice. 
Fo r  in-plane motion, this effect is obscured by variations in c and p. 
The rotation of the orbital plane, on the other hand, is highly insignificant. 
The coefficient k characterizing the degree of entrainment of the atmosphere 
by the rotating Earth may therefore be assigned any value from 0 to 1 in 
the analysis of a i r  drag. 

As an example, consider a satellite injected into orbit ai* = 500 km. 

14.8. THE EFFECT OF AIR DRAG ON 
' MOTION IN NEARLY CIRCULAR ORBIT 

In previous sections we analyzed the a i r  drag Qn satellites moving in 
circvlar orbits at a constant height h.  In reality, however, the orbit 
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height is never constant, and the drag forces a re  therefore variable along 
the orbit. To make this point, consider the relation 

h = r  - - E .  (14.72) 

where r and r E a r e  the distances from the Earth's center to the satellite and 
to the satellite's projection on the geoid surface. * As the satellite moves 
in orbit, the distance r displays periodic fluctuations due to the deviations 
of the injection conditions from the conditions of ideal circular motion, 
and also due to various perturbing factors. 
attributed to the second zonal harmonic of the geopotential (the expansion 
of the Earth's gravitational potential in spherical functions, (12.6)). 

From (2.16) it follows that for small deviations from circular orbit, 
the perturbations due to inaccuracies in the initial conditions vary with 
a frequency which is equal to  the satellite's orbital frequency. 
perturbations produced by the second zonal harmonic, according to (13.20), 
vary with a frequency which is equal to the first two multiples of the 
satellite's orbital frequency. 

expression 1211 

The main perturbations a r e  

The 

The distance rE can be determined from the well-known approximate 

rE=-a,(l -asin*B),  (14.73) 

where a, is the semimajor axis of the geocentric reference ellipsoid, a its 
flattening, and B the geocentric latitude of the point under consideration. 
Hence, making use of (13.2), we find 

(14.74) 

To sum up, the parameter rE varies with a frequency which is equal 

Comparing these results with (14.72), we conclude that the flight altitude 
to twice the orbital frequency of the satellite. 

h varies with a frequency which is equal to the first two multiples of the 
satellite's orbital frequency. 
show that 

Hence, by analogy with (13.20), we can 

h= hm + A i  sin ( u  - u,) +A* sin 2 ( u  - u2), (14.75) 

where Ai, A2, ut, and u2 a r e  some constants which depend on the initial 
conditions of motion and the fundamental parameters of the Earth's 
gravitational field, hm is the mean flight altitude defined by 

(14.76) 

Here r m  is the mean radius of the nearly circular orbit under consideration. 
Integrating (14.75) with respect to u from 0 to 271 we find 

( 14.7 6') 

* The projection of a satellite on the geoid surface is often called the s u b s a t e l l i t e  p o i n t .  
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From (13.22), (14.72), and (14.74) we see  that if the deviations from the 
initial conditions of circular motion a re  small, the amplitudes AI and AI of 
fluctuations in flight altitude may reach aeax21km. 

may increase substantially. 

and (12.25) (i. e., gravity anomalies) a re  taken into consideration, higher- 
frequency te rms  should be included in expression (14.75). 
much smaller, however, than the first three te rms  of the expansion. 

any 10-20 km of flight altitude. The fluctuations of orbit height therefore 
must not be neglected in the analysis of drag forces. 
only those cases when the amplitudes AI and A2 of orbit-height fluctuations 
a re  not greater  than the height of the homogeneous atmosphere H (the 
problem of a i r  drag in largely noncircular orbits is considered in the next 
chapter). Moreover, in determining the drag force, we substitute the 
velocity of the satellite in the mean circular orbit for its actual orbital 
velocity. The relative e r r o r s  resulting from this substitution a re  of the 

order  - , whereas the relative change in drag force due to a change 

in flight altitude is of the order  of h--hm, and H e r , .  

introduced constant-temperature-gradient atmosphere. The reference 
height hi in (14.23) and (14.24) is the meal-; height hm of the orbit. 
making use of (14.29) and retaining the first three terms in the expansion 

of the a i r  density p in powers of *, we obtain the following expression 

for the drag-induced acceleration: 

If the deviations in 
ion parameters a re  large, the amplitude A, of the first harmonic 

If the higher harmonics of the geopotential from the expansions (12.22) 

They will be 

From Appendix 2 we see  that the a i r  density changes considerably for  

We shall consider 

r-rm 
rm 

H 
We derive the a i r  density a s  a function of height for  the previously 

Then, 

(1 4-6) - . . .I, (14.77) 

where Wm is the circular velocity for  r = r m .  
From (14.75) we have 

h - h,= AI sin (a - ul)+ Az sin 2 (u - uz), 

( A - h ~ z = ~ ( A ~ [ 1 - ~ ~ ~ 2 ( a - u l ) ~ +  

+&I1 - c o s ~ ( u - u ~ , ) ~ +  
+ 2 6 1 4 [ ~ 0 ~ ( ~ - 2 ~ ~ +  til) - c o s ( ~ u - ~ u ~ - u , ) ] ) .  

(14.78) 

Expression (14.77) is thus made up from a constant te rm plus periodic 
t e r m s  whose frequency is a multiple of the satellite's orbital frequency. 
The constant te rm is given by 

(14.79) 

As we have previously shown, Te produces secular perturbations in 
the orbital period P and in the mean orbit radius rm Le. ,  the mean flight 
altitude h,. Comparison of (14.29) and (14.79) shows that in nearly 
circular orbits the parameters P ,  rm,  and hmvary just as in circular 
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orbit with a constant height h=hm. 
should be replaced with a corrected expression 

The initial value of the coefficient G 

(14.80) . 

The factor following the coefficient c in the right-hand side of (14.80) is 
always greater than unity. On passing to a nearly circular orbit, we 
speed up the contraction of the orbital period p and of the mean 
flight altitude h m  (and therefore shorten the satellite lifetime) in comparison 
with those obtaining for the mean circular orbit. 

From (14.77) and (14.78) it follows that in nearly circular orbit, the 
expression for the acceleration produced by a i r  drag contains periodic, a s  
well as constant, terms,  The frequency of one of these t e rms  is equal 
to the satellite’s orbital frequency, and all the other frequencies a r e  
”overtones”, 
that, in addition to the previously mentioned secular perturbations in P 
and hmr there will be also perturbations connected, generally speaking, 
with variations in eccentricity, in the position of the perigee point, and 
with some constant increment of the orbital period P .  A more detailed 
analysis shows, however, that the effect of these secular perturbations 
of nearly circular orbits is small in comparison with the previously 
described perturbations in P and hm(this can be easily proved by the 
results of the next chapter). 
orbit can therefore be replaced with the mean circular orbit for the analysis 
of a i r  drag. 
indicated in (14.80). 

Applying the results of Secs. 3.6 and 3.8, we can thus show 

To first  approximation, the nearly circular 

The Coefficient c ,  however, should be modified to c’as 
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Chapter 15 

THE EFFECT OF AIR D M G  ON MOTION 
IN ELLIPTICAL ORBIT 

15.1. FUNDAMENTAL RELATIONS 

In the previous chapter we considered the effect of a i r  drag on motion 
in circular and nearly circular orbits (nearly circular orbit is an orbit 
where the flight altitude fluctuations a re  not greater than the density scale 
height H, i, e., a few tens of kilometers). The results of Chapter 14, 
however, do not apply to elliptical orbit, where the flying height changes 
by as much as  a few hundreds of kilometers. 
therefore proceed with an analysis of a i r  drag in elliptical orbit. 
shall only consider secular variations sf orbital elements, and the problem 
is solved neglecting atmospheric rotation, i. e., putting h- 0 ard V r e l r v  
(see Sec. 14.4 and 14.7). We moreover ignore the change in flight altitude 
due to the Earth 's  flattening and the nsncentral components of its 
gravitational field (these factors may have a substantial influence on the 
determination of a i r  density, but they a re  small  in comparison with the 
contribution from orbit's ellipticity), Making use of (14.1) and (14.30), 
we now write for  the components of the perturbing acceleration 

In the present chapter we 
We 

S=--CPVUr, T=s --CpUVu, W=O, (15.1) 

where u, and vu are  the projections of the velocity vector on the directions 
DrandDu(see Figure 14.6), and v = v w z  is the magnitude of the velocity 
vector. 

Applying (5.11) and (5.13), we write (15.1) in the form 

where p is the parameter of the elliptical orbit, e i ts  eccentricity, I" the 
coefficient in expression (1.2) for  the force of gravity, 
anomaly of the satellite. 

does nat have a component normal to the orbital plane. Air  drag therefore 
does not alter the orientation of that plane. 

Substituting (15.2) in (11.39) and making use of (1.2) and (4.19), we 
obtain approximate expressions for  the secular variations, of the elements 

the current true 

Thus, if the atmospheric rotation is ignored, the perturbing acceleration 



which describe in-plane motion: 
25 

1+2ecosf++e* dQ, 
&~=--2cP?$ P "  ( l+ecos612 

be=- - - - v  j P ( 1 + V s C O S ~ ) ?  

0 
?R 

de, ( e+  cos S) 1 +2e cos V f e 2  
0 

1R 
&l_ 2cp /' sinVf1+2ecos6+e'  dll)3 

e ( I + e c 0 s 6 ) ~  

(15.3) 

where 6 p ,  b e ,  and 8 w  are  % variations of the parameter p ,  the eccentricity 
e ,  and the argument of the perigee w per one circuit of revolution. 

Let us consider the third relation in greater  detail. 
a steady-state atmosphere, i. e., p=p(h). 
we write 

We shall assume 
Then, making use of (4.19), 

where 

and R E i s  the mean radius of the Earth. 
Since 

Q(2n -.a)=-@(.a), 
we have 

2R n 2n R n 

where g=2n-a6. 
In other words, under our simplifying assumptions, 

' 6w=O. (15.4) 

As a first approximation, the argument of the perigee o is thus free 
from secular perturbations due to aerodynamic drag forces. 

15.2. 
OF ECCENTRICITY 

EXPANSION OF tip AND tie IN TERMS 

To simplify further manipulations, we substitute the eccentric anomaly 
E for  the true anomaly 6 in (15.3). From (5.39) 

256 



Hence 

Substituting in (15.3), we find 

(15.6) 

(15.7) 

Series-expanding these expressions in terms of eccentricity and seeing that 

1 

vl -.@ l -ecosE COS$ E - (1  -t+cos2E)T(1 -ecosE)”= 
= ( 1  - ~ c o s ~ E - ~ c o s ~ E -  ea e( ...) X 

X (1 + e GOS E + e2 cos2 E+ e3cos3E+ . . .) = 

= 1 + ecos E +$ cos2E+ $- cosa E+ . . . , 
we find 2n 

ea bp = - 1 p( 1 -4 cos2 E-$ cos4 E - .  . .) dE,  
0 

2n 

(ie =-%p J ~ ( c o s E + ~ c o s ~ E +  
0 

+$co$E+;  cos‘E+ ...) dE 

These ser ies  converge for 

(15.8) 

i. e., for any elliptical orbit. 
unity, the number of significant terms increases. 
to establish in what interval of e-values the number of explicit terms in 
(15.8) is sufficient. The problem in fact reduces to estimating the accuracy 
of the evaluation of integrals of the form 

However, a s  the eccentricity e approaches 
It is therefore advisable 

with expressions 

(15.9) 

2s 

y= pF (E) dE. 
0 
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where P ( E )  is an ap 
To find the relat 

we make use of the 
ich obtains when 7 is substituted for J ,  

Now, suppose that a certain a has been faund, which satisfies the 
condition 

u > q ~ j .  for Z ~ ~ > E E O .  (15.11) 

Th&n;making &e of inequality (15,10), we obtain 

(15.12) 

In particular, if the function F ( E )  does not reverse its sign in the relevant 
interval, i. e,, 

then 
sgn F(E)  = const for 0 Q E< 2n, (15.13) 

&&I%. (15.14) 

From (15.7) it fallows that condition (15.13) is satisfied for6p. For  6e, 
haw ever, 

Hence 

(15.15) 

For  highly eccentric orbits (e>$), the limits of the second integral 

in the right-hand side of (15.15) correspond to a range of flight altitudes 
which a re  much greater than the perigee height hpof the orbit. The a i r  
density p in this range is very low. Therefore, 



and 

e 0 0.1 0.2 0.3 0.4 0.5 

ap 0 6.10-* 4.10-6 5.10-' 3.10-" 1.3.10-' 

a, 0 4.10-' 6.10-" 3.10-' 1.0.10-' 2.6.10-' 

Hence it follows that the accuracy with which de is determined can be 
estimated from inequality (15.14). 

The problem thus reduces to the determination of a parameter a which 
satisfies (15.11). From (15.7) and (15.8) it  follows that in both cases, Le., 

in estimating the accuracy of 6p and be, the ratio 'F(Fy:/E)' is a function 

of e cos E. Therefore, 

0.6 0.1 

4.8.10-' 1.5.10-' 

5.6.10-' 0.11 

where the subscripts p and 8 denote the corresponding values of the 
parameters e and a in accuracy estimates of 8 p  and be. 

We see from the table that for 
Table 15.1 lists the coefficients up and calculated from these formulas. 

0 Q e  Q 0.5 (15.16) 

expression (15.8) is qu3e satisfactory for the determination of 6 p  and de. 

The air density p(h) entering (15.8) will  be calculated assuming an 
isothermal atmosphere (14.9). The reference height hi is the perigee 
altitude hp, so that at any point of the orbit h> h,. As we have shown in 
Sec. 14.3, the corresponding e r r o r  in a i r  density p of the isothermal 
atmosphere is not greater than 10% of the peak density actually observed 
in orbit. This is satisfactory accuracy, seeing that our estimates of the 
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effect of drag forces on satellite motion a re  fairly crude. In isothermal 
atmosphere, 

p(h) = ppexp (---P). (15.17) 

pp is the a i r  density at the height hp 
Let r and rp be the distances of the current point and of the perigee from 

the Earth 's  center. Making use of (5.30) and seeing that in perigee E=O, 
we wri te  

h - hp= r - rp= ae( 1 - cos E ) .  

Substituting in (15.17), we have 

p(h)  = p p e x p ( - v + v  cos E ) ,  

where 

ae 
H. V = -  

Inserting for p in (15.18) its expression from (15.18), we have 

(15.18) 

(15.19) 

(15.20) 

2CP P= ez 8p= - -P-eexp(-v) 1 -e2 (Po - aF2--+ F4-. . .) , 
he = - 2cppp exp (- v )  x 

x ( F ~  + eF, + f F~ + f F~ + . . . ) , where 

F,=f exp(vcosE)cos"EdE, n=O, 1, 2, ... (15.21) 
0 

F, are  clearly functions of v .  They can be expressed in terms of Bessel 
functions of an imaginary argument, f , , (v ) .  Making use of the well-known 
relations 11 1 

2s 

I,, (v) = & e x p  (v cos E)  cosnE dE, 
0 

(15.22) 

we find 
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On the other hand, from the recursion relation (15.23), we have 

Fz (v) = Zn [fo (v) - 7 1  11 (v) . 
Similarly , 

2n 

F3(v) = 1 exp (v cos E )  cos3E dE = 

= J exp (v cos E) 

0 
2s 

3cosE+cos3E dE= 
0 

(15.24) 

The variations 6 p  and 8e of the orbital elements can be calculated from 

This technique is convenient for orbits with moderate 
relations (15.19), (15.20), and (15.24) with the aid of tables of Bessel 
functions. 
eccentricity, satisfying inequalities (15.16). 
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15.3.  ASYMPTOTIC EXPRESSIONS FOR 6 p  
AND 6e IN HIGHLY ECCENTRIC ORBITS 

V 
- 

From (15.20) and (15.24)  we see that the secular perturbations 6 p  and 6e 
in elliptical orbit a r e  functions of the parameter Y. 

it  follows that the parameter v is the ratio of the amplitude of orbit height 
fluctuations to the density scale height. The technique developed in the 
previous chapter for nearly circular orbits therefore applies when v<l  
(see Sec. 14.8).  Here we shall deal with the case 

From (15.19)  and (5.3) 

v>>l. (15.25)  

1 .5  2 3 4 5 6 7 

7.3.10-' 4.2.10-s 2.7.10-' 9.10-4 3.10-' l .10-4 1,10-4 

7.3.10-' 9.6.10-' 4.4.10-' 1.3.10-' 3.10-' 2.10-4 8.10-5 

Bessel functions L,(v) and f,(v) can therefore be determined from the 
asymptotic expansions 11 I 

Table 15.2 lists the relative e r r o r s  of these expansions for  various v 
(the calculations were made retaining four te rms  in each ser ies ,  as shown 
in (15.26)) .  We see  from the table that for 

v>1.5 (15.27)  

the functions I,(v) and l i (v )  calculated from the asymptotic expansions a re  
accurate to within 1%. 
our problem. 

This is more than adequate for the solution of 

Making use of (15.19)  and putting H d 0 0  km and a>6500 km, we substitute 
for (15.27) the inequality 

e>1.5:=0.023. (15.28) 

From (15.24) and (15.26)  we have 

(15.29) 
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where 

f" = 

f1=  

f i  = 

f 3  = 
f -l-x*T+-.-- 15 1 489 1 5445 1 
4- 128 vl m-7+ . . *  

Substituting (15.29) in (15.20), we find 

(15.30) 

(15.31) 

For orbits which satisfy conditions (15.1 6) and (15.27) o r  (15.28), 
expressions (15.30) and (15.31) a r e  clearly adequate for calculating the 
variations Gpand 6e. 
Bessel functions. 

A serious shortcoming of (15.31) is that it is an expansion in powers 
of e, and is therefore inconvenient for calculating secular perturbations 
of highly eccentric orbits. To eliminate this deficiency, we rewrite the 
ser ies  in the right-hand sides of these expressions as 

In this case, we need not even refer to tables of 

where 

1 ea e4 
f G - y f S - B f 4 -  * ' a  

f l+ef2+f f3+$f4+ . . . 
e2 e' ... - g ...)+ R1, 

... = f l ( t + e + T + p +  ea ea ...)+ R ~ ,  

Now, 
I - - - - -  e2 e4 ... =vT=7-, 

l + e f T - t T +  e2 e3 ... =-. 

(15.32) 

(15.33) 

(15.34) 
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These equalities a r e  exact (remaining in force for  any number of terms in 
the expansions), since they a re  obtained from the expansions applied in 
the derivation of the original relations (15.8) if we put cosE= 1. 

To estimate the residuals &and Rz, we retain terms of the order  
1 7 in (15.33). Thus, making use of (15.19), we find 

1 (15.35) 

We see from these expressions that the residuals a r e  of the order:. 

This ratio is known to be small (not greater than 0.01). 
allowed value of this ratio decreases with increasing eccentricity e (since 
with increasing e ,  the minimum allowed semimajor axis a increases). 
In (15.32) we may therefore omit the residual terms Ri and Rz. Applying 
(15.19), (15.31), and (15.34), we obtain the following approximate finite 
relations 

The maximum 

(15.36) l ap - IcPpPe-fo - - - 2  m f i A ( v ~ c p p ~ .  

&? = - 2cppp % f 1  E= - 2 v G  !j$ f,(")Cppl/iC7-. 

fl-3 f i  

From (15.30) it follows that at further simplification (for large v ) ,  we 
may put in (15.36) 

f o F 3 : f * F 3  1. (15.37) 

The above relations can be applied, in particular, for analyzing the 
motion in highly elongated elliptical orbits, whose eccentricity is beyond 
the limits specified by (15.16). 
in (15.36) becomes meaningless, however, since the residual term Rz is 
represented in (15.35) by a divergent series.  
apply for orbits of very low eccentricity, which do not meet conditions 
(15.27) o r  (15.28). 
(15.21) we have 

For e close to unity, the second expression 

Expressions (15.36) do not 

In particular, for e=O, from (15.19), (15.20), and 

(15.38) 

Relations (15.38) cannot be derived from the asymptotic expressions 
(15.31) and (15.36) by taking the limit a s  e-0. On the other hand, the 
above expression for &p coincides with relation (14.34) which has been 
derived fo r  the radial variation fir in circular orbit (upon substituting p 
for r ) .  
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15.4. SECULAR PERTURBATIONS OF 
LOW-ECCENTRICITY ORBITS 

In determining the secular' perturbations of low-eccentricity orbits, 
which do not satisfy condition (15.27), we may conveniently apply the well- 
known expansions of Io(v) and I , (v)  in powers of v 111: 

For  
v < 2  

(15.39) 

( 15.40) 

the relative e r r o r  introduced by expansions (15.39) is not greater than 
0.27'0 and 0.77'0 for the first  and the second ser ies ,  respectively. This 
accuracy is more than adequate. 

We shall only consider orbits which satisfy inequality (15.40), which 
for H-100km and ax6500km reduces to the condition 

e 4 0.03. (15.41) 

In (15.20) we therefore omit all t e rms  whose order  is higher than e. 
From (15.24) and (15.39) we also have 

(15.42) 1 F2 = 2++= V 2 f m  Y(+ . .. . 1 3  5 

Substituting (15.24), (15.39), and (15.42) in (15.20), we obtain to terms 
of the order  e 

where 

Pm = PP exp (--VI. 

(15.43) 

(15.44) 

From (15.17) and (15.19) it directly follows that p m i s  the a i r  density 
at the mean flying height 

h,=-hp+ae=a - RE.  (15.45) 

For e=0, relations (15.43) reduce to (15.38) or (14.34). F o r  small  e ,  
the first relation in (15.34) coincides with the corresponding expression 
for nearly circular orbit, which can be derived from inequality (14.80) 
if  the Earth 's  nonspherical figure is ignored and an isothermal atmosphere 
is adopted, Le . ,  i f  we put A1=ae,A2=0, H T = m .  
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Comparison of (15.16)> (15.27), and (15.40) shows that the approximate 
relations of this and previous sections for the secular perturbations of 
elliptical orbit elements cover the entire range of allowed elliptical orbit 

eccentricities. In the interval O<e<$, relations (15.43) should be used, 

for -';;-<e<0.5, relations (15.31) apply, and for  0.5CeC1, relations (15.36). 1 5H 

15.5. SECULAR PERTURBATIONS OF SEMIMAJOR AXIS, 
ORBITAL PERIOD, AND PERIGEE AND APOGEE HEIGHTS 

Previously considered secular perturbations in p and e completely 
describe the variation of orbital shape during comparatively long periods. 
In various applied problems, the perturbations of other orbital elements 
a re  also required. Under this category we have 

(i) the semimajor axis a, 
(ii) the orbital period P, 
(iii) the perigee height h p  
(iv) the apogee height ha. 

For elliptical orbits and a spherical Earth, we can show, making use 
of (5.36), that 

where & p ,  &a, &hp, &ha. 6rp, bra are  the variations of P , a ,  hp, ha, rp, r, per 
circuit, and rp and ra a r e  respectively the perigee and the apogee distances 
from the Earth's center. 

and (5.3): 
To find the variations &a, &rp, and Bra, we make use of relations (5.2) 

a = - - P  rp=a(l -e), ra=a(l+e), 1-e* ' 

whence 

1-e* + (1-02y 
brp=(l -e)&U-a&, 
bra= (1 +e) 6a+ a &. 

(15.47) 

Substituting (15.7) in the right-hand sides of these relations, we find 

1 +e GO8 E ba =- 2caz i p  - e  E vl - e*cos*E dE, 
0 
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Series-expanding the integrand, we obtain, a s  in (15.8), 

2lt > 

6a = - 2cd / p (1 + 2e cos E+ $ eZcos2E + 
0 

+eacos3E + &cos4 E + . . . ) d E .  

&z = -2cppa2 exp (-v) (Po+ 2eFl +$- e2Fz + eaF3 + 7 e4F4 + . . .) , ' 
brp==-2cpp2(1 - e ) e x p ( - v ) [ ( ~ ~ - - ~ ~ ) +  

+e(FL--F2)+; (F,--F,)+$(F, - F,)+ . * .] * 
+e)exp(-~) [ ~ 0 + ~ 1 ) +  

+e (PI + FJ + f (6 +Fa) + f (F,S.F,)+ - .] - 

0 

2R 

brp z - 2cu2 I1 -e )  [p( 1 -cosE)( 1 +ecos E+ 

* (15.50)  

(15.49)  

brp=-2cppu2(1-e) / q ( t o - f d +  

bra =i -2cp~"'~l +e) C [ ( t o +  A) + 
+e (t, - f2)+ 5 u2 - t;)+ - /,I+ . . .] 

+ + + f ~2 +tal + f @a+ 14) + * * -1 - 

+ ~ c o s 2 E + $ - c o s a E +  e2 ...) dE, 1 

+ (15.51)  

I 

0 I an 
bra =- 2ca2( 1 +e) j p (1 + cos E )  (1 +e cos E+ 
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where 

(15.53) 

F o r  fairly large v (or if no high accuracy is required), we may achieve 

3 1  45 1 f'(9 = 2v(frJ- fJ = 1 +T * ";+= * 7 + . * 

further simplification by putting 

f o x f i z y x  1. 

From (5.36), (15.46), and (15.52) we have 

For low-eccentricity orbits which satisfy conditions (15.40) or (15.41), 
we retain only terms of the order  e in (15.50). 
(5.36), (15.24), (15.39), (15.42), (15.44), and (15.46), we find 

Then, making use of 

. (15.55) 

In conclusion, note that the range of e-values where the formulas of this 
section apply coincides with the corresponding range for the variations 6 p  
and Ge(see Sec. 15.4). 

15.6. ANALYSIS OF SECULAR PERTURBATIONS 
O F  ELLIPTICAL ORBIT 

The previous results enable us  to analyze the character of the secular 
perturbations produced by drag forces in elliptical orbits. From (15.1), 
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(15.4). (15.36), (15.43), (15.52), and (15.55) it follows that, under the 
assumptions introduced at the beginning of this chapter, the orientation 
of the orbita: plane and the position of the perigee point remain fixed, the 
secular perturbations leading to  a monotonic reduction in the semimajor 
axis and the eccentrioity of the orbit. On account of a i r  drag, the satellite 
is thus seen to describe a convolute elliptical spiral, which gradually 
approaches a circular orbit. The period of revolution P monotonically 
decreases,  and the mean orbital velocity increases, The flying height 
monotonically decreases along the entire trajectory. The loss of orbit 
height is maximal near the apogee point and minimal near the perigee. 

We see from the aforementioned relations that the secular orbit 
perturbations resulting from a i r  drag a r e  directly proportional to a i r  
density at some characteristic altitude. 
satisfy condition (15.40), this reference level is the mean orbit height 
hm=a-RE.  whereas for highly eccentric orbits, where condition (15.27) 
is satisfied, the perigee height hP=rP- RE is adopted a s  reference. This 
is so because for low-eccentricity orbits, the a i r  density is approximately 
a linear function of height in the relevant range of flight altitudes, i. e,,  
only the first two terms need be retained in expansions (14.24). The mean 
deceleration in this case is determined by the mean air  density at the mean 
flying height. 
longer a linear function of height, since over a greater part of the orbit 
the a i r  density is much less than the density at the perigee point, It is 
therefore the deceleration near the perigee that has the decisive effect 
on secular perturbations of orbital elements. 

It follows from the preceding that the secular orbit perturbations 
resulting from a i r  drag rapidly decrease a s  the characteristic flying 
height increases. 
of orbits with different eccentricities: a family of orbits with constant 
perigee height, where 

For low-eccentricity orbits, which 

For highly eccentric orbits, however, the a i r  density is no 

To analyze this dependence, we consider two families 

fp = const, a =-rP- I-e ' (15.56) 

and a family of orbits with constant mean flight altitude, where 

a = const, rp = a (1 - e). (15.57) 

We shall analyze the following secular perturbations: 
(i) change of orbital period per  circuit, 8P; 

(ii) mean rate of change of orbital period, P'=$; 

(iii) change of perigee height per  circuit, 6rp; 
(iv) change of apogee height per  circuit, 6r,. 

of the ratios 
For the family of orbits (15.56), we shall seek the eccentricity dependence 

where bp,~. 
of radius r=rp. 

&cir are the corresponding perturbations in circular orbit 
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Clearly, for  e=O, 

(15.58) 

For highly eccentric orbits, which satisfy condition (15.27), we may 
write, making use of (5.36), (14.33), (14.34), (15.19), (15.52), (15.54), 

(15.59) 

Making use of (15.55), we can wr i t e  analogous expressions for low- 

Applying (15.30) and (15.53), we see that the ratios 2; and -?p 

eccentricity orbits, too, 

brcir 
monotonically decrease with increasing eccentricity e .  Here 

and 3, on the other hand, first decrease with The ratios -, - 
increasing eccentricity, then s tar t  increasing, and for e- ,  1, they tend to 
infinity, 

6P P' 

8Pcir Pdir' "cir 

These ratios a re  minimal for moderately eccentric orbits, where 

f O ( 4  X f i ( V )  = 1. 

Substituting in (15.59), we  see that the minima approximately correspond 
to the solutions of the equations 

3 1 

6P P' bra 
It follows from these equations that the ratios -* - I - a re  minimal * OPcir Pkir 'rcir 

E 
for the eccentricities 

e,=-=O.lN. W9-4 e,,=0,2, e,= *4-' =0.1375. 
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Substituting these eccentricities in the corresponding relations in (15.59), 
we obtain the minimum values 

The existence of these minima is attributable to the combined influence 
of two factors which act in opposite directions. On the one hand, increasing 
e for constant rp ra ises  the flying height, which reduces the effect of a i r  
drag. On the other hand, any increase in the eccentricity ra i ses  the perigee 
velocity, and the effect of the impulsive deceleration at the perigee point 
on the apogee height and the orbital period becomes more pronounced. 

" " , h, d c p  and -?p vs, Figures 15.1 and 15.2 plot the ratios -* - 
6Pcir Pcir bfcclr bra ' arc1r 

the eccentricity e, for rp= 6500 km (hp= 229 km) and H =  50 km. 
eccentricities not satisfying condition (15.27), the calculations were made 
from (15.55). We see from the graphs that for moderate eccentricities 
(e< 0.05), the secular perturbations resulting from air drag rapidly decrease 
with increasing e .  Note that &rp decreases at a much higher rate than b r a  does. 

For  0.05<e<0.3, 8 P  and &r, remain fairly constant, and we have 

~0.1510.23, Oram0.3-0.4. 

in &P and &ra. 
0.13P;ir to 0.113p,'ir. For e-1, &P, & r a ,  and P' tend to infinity. & r p ,  on the 
other hand, monotonically decreases for O<e<t. 
a parabola (e+ I ) ,  this monotonic decrease proceeds at a somewhat reduced 
rate. 

For the second family of orbits, which satisfy condition (15.57), we only 
consider the eccentricity dependence of the ratio 

For  

bP -- 
ape,, - 

Further increase in e produces a steep increase 
%r 

P' does not change much for 0.05<e<0.5, fluctuating between 

As the orbit approaches 

6P P' 6a -*-=-, 
bP,  Ph br, 

where bP,, P h ,  and 6rm a r e  the values of &P, P', and &r for the mean circular 
orbit of radius rm=a. 

Making use bf(14.33), (15.54), and (15.55), we write 

bP vb @ a~;;; =t 1 + $ +&+= + . . . +- ev (1 + + -&+ . . .) ( 15.60) 

for orbits satisfying condition (15.40), and 

for orbits satisfying condition (15.27). 

monotonically with the eccentricity e. Hence, for any elliptical orbit 
we have 

The ratios in the left-hand sides of (15.60) and (15.61) increase 

* > &P,, P' > P;, ta > arm. (15.62) 
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6P FIGURE 15.1. The ratios -, z, and %vs. eccentricity 

e of elliptical orbit. 
6PC1, Pdl, Brc,, 

FIGURE 15.2. The ratios -% and *p vs. eccentricity 

e of elliptical orbit. 
bra brclr 

212 



bP Figure 15.3 plots the ratio - vs. the eccentricity e for H= 50km, 
6PIn 

a = 7000 km. We see from the graph that this ratio increases steeply 
with e. Therefore, evenfor comparativelylow eccentricities ( e> 0.02 -0.03), 
the secular perturbations of elliptical orbit are much larger  than the secular 
perturbations of corresponding circular orbit. 

bP 
aprn 

FIGURE 15.3. The ratio-vs. the eccentricity e 

of elliptical orbit. 

The foregoing relations give the perturbations of orbital elements during 
one circuit of revolution. In various applied problems, when analyzing the 
secular orbit perturbations during comparatively short periods, which 
comprise a few circuits of revolution, these perturbations may be assumed 
constant. 
the variation in the time of arrival at a given point displays a square- 
law variation, like the secular displacement (At) 
the second equality in (14.35)). Indeed, 

The orbital elements a re  thus linear functions of time, where 

in circular orbit (see 

I ,  

(~t)s ,c(n)  = I: Mi* 
i-1 

where (At)sec(n) is the displacement (Af)sec at the end of the n-th circuit, APi 
the variation of the orbital period during the i-th circuit. 

variations in the osculation period at the beginning and the end of the first 

circuit, i. e., API= F .  

APi can be approximately determined as the arithmetic average of the 

6P Hence, 
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and then 

The general trend of secular perturbations a s  described above is 
eventually distorted as the satellite dips into progressively denser 
atmospheric layers. 
and their variation approaches the curve plotted in Figure 14.4 for the 
contraction of circular orbit. 

a r e  approximate on account of our simplifying assumptions. 
simplifications a re  the following: 

The rates  of change of the orbital elements increase, 

We should always bear  in mind that the results obtained in this chapter 
The principal 

(i) the rotation of the Earth's atmosphere is ignored; 
(ii) a steady-state (static) atmosphere is introduced; 

(iii) the a i r  density is calculated for the isothermal atmosphere; 
(iv) the Earth's flattening is neglected. 

which a re  not apparent in our idealized scheme. Atmospheric rotation, 
for instance, gives r i se  to a certain slow variation in the orientqtion of the 
orbital plane (see Sec. 14.7). The dynamic properties of the atmosphere, 
in general, may alter the position of the perigee point, since in this case 
our proof of equality (15.4) is meaningless. 
long-periodic fluctuations on the monotonic loss of perigee height hp, since 
the perigee point moves in the noncentral gravitational field of the Earth 
(see Sec, 13.5). 
upward trend is of course eventually offset by the monotonic loss of altitude), 
which results in a temporary reduction in the rate  of secular orbit 
perturbations. 

The scheme analyzed in this chapter therefore brings out the main 
regularities attributable to a i r  drag, but obscures the finer features. 
obtain a more accurate picture of flight conditions in the gravitational field 
of the nonspherical Earth, we should preferably proceed with numerical 
integration of the complete se t  of differential equations of motion of the 
satellite's mass  center. 

If the calculations a re  carried out with the aid of the approximate 
relations derived for nearly circular orbits, it is advisable to apply the 
method of Sec. 14.8, which employs a constant-temperature-gradient 
atmosphere and takes into consideration the effect of the Earth's flattening. 
For  highly eccentric orbits, the characteristic parameter pp is determined 
a s  the a i r  density at the minimum flying height krnlll, calculated with 
allowance for the Earth's flattening and the noncentral components of its 
field of gravity. 
of revolution should be calculated from 

Therefore, in reality, secular perturbations include various disturbances 

Earth 's  flattening superimposes 

For some orbits, kp may even temporarily increase (this 

To 

The total change bPtnt in orbital period during one circuit 

(15 63) 

where 6Pdragis the change in orbital period due to a i r  resistance, which can 
be calculated from the formulas of this chapter, and 6P' is the change in 
orbital period in drag-free space ( c  = 0). The latter component is contributed 
by long-periodic perturbations of orbital period attributable to the Earth's 
nonspherical figure (see Sec. 13.9). 
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In conclusion note that in calculations of highly eccentric orbits we 
often have to consider the combined influence of atmospheric drag and 
the pull of other celestial bodies (see Sec. 16.12). 

8- eo 
1 + E  -I$.eB exp (- 2 L P ~ ) ,  

eo exp (- 2 ~P-'.P) 
e= H <e, exp (- 2 LPO-'P). H 

15.7. 
DURING SATELLITE LIFETIME 

THE CHANGE IN ORBIT ECCENTRICITY 

(15.64) 

To establish the variation of eccentricity during the entire lifetime of 
the satellite, we consider the relationship between the secular perturbations 
of eccentricity (be) and of perigee height (6rp). Making use of (15.19), (15.36), 
and (15.52), we may wr i t e  for  highly eccentric orbits 

We shall only seek an approximate dependence between the different 
perturbations. 
finite increments be and 8rp and putting 

Therefore, substituting the differentials de and drp for the 

we obtain the differential equation 

2 dr de de de -P =-=--- 
H e ( l + e )  e I + e '  

Integrating from some initial values rpo and eo to the current rp and e ,  
we find 
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with the decrease in e and rp. 
injected into highly eccentric orbits spend but a small fraction of their 
lifetime in the terminal nearly circular orbit. 
conversion of the satellite’s orbit into a circular one is a sign of its 
imminent fall on the ground. 

Therefore, satellites which have been 

In other words, the  

. (15.66) 

15.8. DETERMINATION OF SATELLITE 
LIFETIME IN ELLIPTICAL ORBIT 

To establish the lifetime of a satellite, we must t race the secular 
variations of its orbital elements during a comparatively long period. 
Since the orbital period of a satellite generally occupies a minor fraction 
of its lifetime, and since the secular variations of orbital elements a re  
essentially smooth, we shall substitute differentials for the finite increments 
of orbital elements per circuit. In other words, we take 

(15.65) 

where P is the orbital period, t the relative time defined by (14.38). 

differential equations 
Making use of (15.36) and (15.43), we obtain the following set  of 

- f i t 1  - - e a ) * p ( h , ) x [ ~ ( l + ~ + ~ +  ...)+ 
+e(l+:++&++. . .)] for v < 2, where 

fo(v) and fr(v) are  determined from (15.30), and p(hp), H(fsp), p(h,) are  
borrowed from appropriate tables. 

Numerical integration of these differential equations wi l l  provide us  
with a detailed picture of variation of the orbital elements of the satellite 
to its eventual fall (which can be identified in practice a s  the epoch when 
the perigee height hpwill have dropped to the critical value hcrlt ss 100 km). 

216 



The corresponding relative time tllfe is a function of the initial conditions 
of motion: 

where PO and eo a re  the initial values of the corresponding elements. 
Making use of (14.38), we find that 

(15.67) 

For any static model atmosphere, the function F(po,  eo) can be calculated 
by numerical integration of the differential equations (15.66) for various 
initial conditions. 
any other pair of initial conditions which specify the size and the eccentricity 
of the orbit will do, such a s  (rpo, rao), (rpo, eo), (PO, eo),  etc. / 2 2 / .  

The function F need not be determined for po and eo: 

15.9. ESTIMATING THE SATELLITE LIFETIME 
IN HIGHLY ECCENTRIC ORBITS 

Various e r r o r s  connected with the inaccuracy of the model atmosphere 
and with the variability of its parameters during long periods creep in when 
the lifetime of an artificial Earth satellite is determined by the method 
outlined in the previous section. The expected lifetime cannot be calculated 
with any accuracy in practice, and the best that w e  can hope for is some 
estimate of this time, 

f rom the local isothermal atmosphere, whose parameters a re  determined 
from (14.12) and (14.16), where hi is the initial perigee height hpoof the 
orbit under consideration, 
of the satellite’s lifetime, the perigee height is fairly close to the initial 
value. 

we may write (making use of (5.1) and (15.66)) 

In deriving approximate formulas for these estimates, we shall proceed 

This approach is justified, s i w e  during most 

For  highly eccentric orbits, which satisfy conditions (15.27) o r  (15.28), 

(15.68) 

We seek an approximate solution, and we may therefore put fi(v) I 1. 
Moreover, from (14.9) and (15.64) we have 

(15.69) 

where rpo and eo a r e  the initial values of rp and e,  and ppo is the a i r  density 
at the initial perigee altitude. 

Equation (15.68) thus takes the form 



The parameter rp in the right-hand side of this equation is fairly constant, 
and we may therefore substitute the initial value rpo  for it. Then 

(15.70) 

As we have shown in Sec. 15.8, the eccentricity of the satellite’s orbit 
toward the end of its life is practically zero. 
equation (15.70) over the satellite’s lifetime, we find 

Therefore, integrating 

Hence, making use of (14.38), we obtain a final expression for  the lifetime 

where 

(15.71) 

(15.72) 

In deriving this relation, we have knowingly admitted an inaccuracy: 
the integration of (15.70) with respect to e from 0 to eo is justified only 
for highly eccentric orbits. 
comparatively small, since the flight time in low-eccentricity orbits is 
short in comparison with the total lifetime. 

When the lifetime is calculated by substituting (15.72) in (15.71), the 
right-hand side of the explicit expression contains a factor 

The resulting e r r o r  in t l t fe ,  however, is 

1 

C P p o V m q 2  * 
k =  

Making use of (15.54) and putting ~ o ( Y )  = I ,  we  find 

where &Po and aQ a re  the initial values of the orbital period perturbation per  
circuit, 6P, and of the semimajor axis a .  
(15.?1), (15.72) and applying the second equality in (5.3), we find 

Substituting this relation in 

Hence, making use of (5.36), we wr i t e  

(15.73) 
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where 

and Po is the initial orbital period of the satellite. 

satellites, since it gives the unknown quantity as a function of the parameters 
Po, !BPol and eo which can be obtained with fairly high accuracy. 

should evaluate the indefinite integral 

The above formula is convenient for estimating the lifetime of orbited 

To calculate the functions $(eo) and qi(e0) from (15.72) and (15.74), we 

Substitution of variables 

(15.75) 

(15.76) 

We now make use of the well-known relation 1251 

X dx dx  - 1 (4-bxz)z - 2a(u-bxz)  +kr a-b$  

and note that in our case 

1 1 ~ 2 ,  b = l .  

Expression (15.76) then takes the form 

or, making use of (15.75), 

Hence 

For  moderate eccentricities, expression (15.77) is preferably replaced 
From the standard with a ser ies  expansion of the integral in powers of e. 
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expansion of functions of the form (1 +e)&, w e  have 

Then 

Substituting in (15.72) and (15.74), we  obtain after elementary manipulations 

(15.79) 

Appendix 2 tabulates the function @ ( h )  as calculated from (15.72) for  the 
model atmosphere used in this book. 
$(eo) and $,(eo) a s  calculated from (15.72), (15.74), and (15.77). 

Appendix 3 tabulates the functions 

15.10. SATELLITE LIFETIME IN 
LOW-ECCENTRICITY ORBITS 

To find the lifetime of low-eccentricity orbits, we make use of 
expressions (15.20), (15.24), and (15.50) for  the secular perturbations of the 
semimajor axis (Sa) and eccentricity (Se). Omitting te rms  proportional 
to e ,  we find 

(15.80) 

where 

is the a i r  density at the mean height 

h,= a - RE. (15.82) 

Making use of (15.19), we obtain an expression for  the change per 
circuit in Y : 

For small eccentricities, the second t e rm in the right-hand side of this 
expression is much less thanthe first term.  This follows from the expansion 
(15.39), which gives 
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Since a>>2H, we have 

Moreover, from (15.80) and (15.82) we see  that the change per circuit 
in mean orbit height is 

b h m = b  = -4flchazIo(v). (15.84) 

Orbit perturbations vary smoothly, and we may therefore write 

(15.85) 

We now make use of expression (15.22), which gives 

whence 

2 1  

I , (v )=&[  exp(vcos E)dE,  

I ,  (v) = 

I,(v)=& 

0 

2n 

exp (v cos E )  cos E dE,  
0 
2R 

exp(v cos E)cos2E dE I 
0 

2n 

On the other hand, from (15.23) we have 

Adding the last two equalities, we find 

Equation (15.85) now takes the form 

where hmo and vo a re  the initial values of the corresponding parameters. 
From this relation and from expansion (15.39) we see that v monotonically 
decreases in time a s  the mean flying height diminishes. Since invariably 
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hmo >> H, we may take for  the final value of V ,  obtaining toward the end 
of the satellite lifetime (hm=O), 

VA = 0. (15.86a) 

We now write a differential equation between v and the relative time T. 

Making use of (5.36), (14.38), and (15.83). we have 

where p m o  is the a i r  density at the height hmo. 
in the right-hand side of the differential equation, we find 

Substituting this expression 

We integrate this 
satellite‘s lifetime. 
substitute the initial 
of (15.86a), we find 

equation from the initial epoch to the end of the 
Seeing that the semimajor axis varies slowly, we  
value a. for  the actual a. In the result, making use 

Hence, applying (14.38) and (15.39), we obtain an expression for  the 
lifetime of low -eccent ricity orbits : 

or ,  making use of (14.44) and (15.821, 

(15.88) 

Applying (5.36), (15.19), (15.39), (15.46), and (15.80), we can eliminate 
the factor cp, from (15.8?), writing 

For eo-+O, relations (15.87), (15.88), and (15.89) clearly reduce to the 
corresponding equations (14.51), (14.53), and (14.54) for  circular orbits. 
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15.11. COMPARATIVE ANALYSIS OF 
LIFETIME FORMULAS 

We have derived two groups of expressions that can be used in calculating 
the lifetime of an elliptical orbit. The formulas of Sec. 15.9 apply for orbits 
of high initial eccentricity e,,.  When e,, is small, they a r e  obviously in e r r o r  
(tilfe-+Oas e - 0 ) .  The formulas of Sec. 15.10 were derived for small initial 
eccentricities. F o r  eo-O, these relations give a solution which in the limit 
coincides with the circular orbit solution. 

Let us now consider the question of "matching" of these two distinct 
groups of formulas. Making use of the asymptotic expansions (15.26) and 
relations (15.19) and (15.81), we write expressions (15.87) and (15.89) a s  

where OI(eo) and OII(eo) a re  the corresponding e r ro r s :  they have the order  
of the initial eccentricity, since in the derivation of the respective formulas 
we ignored terms of this order.  

On the other hand, for high eccentricities, we may write f rom (15.71), 
(15.72), (15.73), and (15.79) 

1 1 where 0111 (x) and O~V(Y,) a r e  the corresponding e r r o r s ,  which have the order 
1 H  -=-, 
'0 aeD 
Equating the lifetimes tllfe from (15.90) and (15.91), we obtain, to terms 

of f i rs t  order  in eo and -!-, 
va 

Hence, equating terms of the first order of smallness in e,, and -!-, wefind 
vo 

(15.92) 
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The e r r o r s  of (15.90) increase and the e r r o r s  of (15.91) decrease a s  
eo grows. Let us  determine the critical initial eccentricity ecr, for which 
a switch should be made from one set  of formulas to the other. 
critical parameter is clearly defined by the conditions 

This 

Making use of (15.92) we see that the solutions of both equations give close 
results: 

ecr - - 0.66 fl= a0 0.66 {F = 

H 
‘PO 

- - 1/ 0.44 - + 0.05 
- 

M 0.66 - 0.22 K .  (15.93) 
‘P 0 ‘PO 

Table 15.3 lists the values of ec,calculated from this relation for various 
initial perigee heights hpo=rpo - RE. 
taken from the graph in Figure 14.1. 

The parameter H for various hpo was 

TABLE 15.3. 

Expressions (15.92) can be used in estimating the order of magnitude of 
the e r r o r s  contributed by the approximate approsch to the derivation of the 
foregoing formulas. 
maximum e r r o r  of some 5-107” obtains in t l l f e  for eo=e,, if  low-eccentricity 
formulas a re  applied when eo 4 e,, or high-eccentricity formulas a re  used 
for eo 2 e,, . 

However, the inaccuracy of our simplifying assumptions introduces 
additional e r r o r s  in the determination of tllfe. 
to the following factors: 

derivation of the relevant formulas; 

from the theoretical values and inaccuracies in the coefficient c; 

From (15.92) and from Table 15.3 it follows that a 

These e r r o r s  a re  attributable 

(a) introduction of the isothermal atmosphere a s  a basis for the 

(b) deviation of the actual initial values of the atmospheric parameters 

(c) dynamic state of the atmosphere; 
(d) failure to allow for the Earth’s flattening and the noncentral 

(e) failure to allow for other astrophysical and geophysical factors 
components of i ts  field of gravity; 

(lunisolar attraction, radiation pressure,  gravity anomalies, etc. ).  

for nearly circular orbits should be calculated from (14.4 l ) ,  and not (14.44). 
To reduce the influence of e r r o r s  under (a) above, the function F(hm O) 

284 



For highly eccentric orbits, however, this method is inadequate since the 
a i r  drag in these orbits is mainly determined by the comparatively dense 
atmosphere near the perigee point. 
be chosen, which provides the best approximation to the actual variation 
of a i r  density near the perigee. 
atmosphere a re  calculated from (14.12), putting hi=hpo.  
advisable to change over from relations which express t E f e  in terms of 
f'(hrno) to those linking tlife with @(hpo) (see Sec. 15.9). 

satellites by calculating 6 f o  from actual orbital measurements. 
case formulas which give tlife in terms of SP, should be used. 

and reliable dynamic model of the atmosphere is available. 

height hpo in all the relations should be replaced with the minimum height 
h,lno during the first  circuit, which is calculated with allowance for the 
Earth's flattening and the noncentral components of the geopotential (both 
these factors should be introduced jointly, since their effects a r e  of the 
same order of magnitude). The mean flying height is then obtained from 
the formula 

A local isothermal atmosphere should 

The adjustment parameters of this 
It is therefore 

The e r r o r s  under (b) above are successfully eliminated for orbited 
In this 

The e r r o r s  under (c) above cannot be eliminated unless a fairly accurate 

To reduce the effect of the e r r o r s  under (d) above, the initial perigee 

h m  o = b i n  o + aoeo. 

In calculating the lifetime from experimental values of the initial orbital- 
period perturbation 6Po, we should remember that the reduction of orbital 
measurements actually gives the total perturbation 6P tot 0. In accordance 
with (15.63), this is a sum of two components, 6Pdrago and 6Pi. For  fairly 
eccentric persisting orbits (with lifetimes of a few years),  the long-periodic 
component SPh resulting from the Earth's flattening may turn to be 
comparable with the secular component Sfdrag0 conditioned by air  drag. 
If, however, the satellite lifetime is considerably longer than the period 
of perigee movement Pm (which is equal to the period of the component SP'), 
the effect of the long-periodic component SP'on tlife can be ignored. The 
increment 8f0in the right-hand sides of (15.73) and (15.89) is then replaced 
with Sfd ragor  which is calculated from 

bPdrago = bP tot 0 - ap;. 

The effect of various astrophysical factors (lunisolar attraction, radiation 
pressure,  etc.)  is considered in the next chapters. 
high-flying satellites these factors may have a decisive influence on t l l fe 
(see Chapters 1 6  and 17). 

On the whole, given the state of our present-day knowledge of the upper 
atmosphere, we cannot obtain reliable data for satellite lifetimes: the best 
we can hope for is a crude estimate with e r r o r s  ranging from 10 to 50%. 
These e r r o r s  may be substantially reduced once the satellite has been 
actually injected into orbit and the parameter 6 f o  has been measured 
experimentally (this is particularly significant for  short-living satellites). 

In conclusion, we consider to what extent the eccentricity of the orbit 
affects its lifetime. Take a family of orbits with a constant initial semi- 
major axis as, i. e., constant initial mean flying height h m o  or  constant 

We only note that for 
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initial period Po; the initial eccentricity eo is variable. 
the dependence on 

Let us  establish 
of the coefficient 

(15.94) 

where tlife(Uo) is the lifetime of a circular orbit with initial radius ro=ao. 
Making use of (14.44), (14.51), (15.19), (15.26). (15.39), (15.71), (15.79), 
and (15.88), we wri te  for an isothermal atmosphere 

1 V2 
=1-2- ... for v o < 2 ,  e o < = .  VO 

21,(v,) = v2 v; 8 
l+$+m+.. .  

It follows from these relations that for aO=const, the lifetime monotonically 
decreases with illcreasing eo. 
slow for small eo. For nearly circular orbits we may therefore put with 
fai r  accuracy tllfezflife(ao). However, a s  eo increases, the lifetime falls 
off sharply due to the steep drop in exp (--YO). 

Let us now consider a family of orbits with constant initial perigee 
height hpo(or constant rpo) .  
for this family is characterized by the coefficient 

This shortening of lifetime is comparatively 

The dependence of lifetime on eccentricity 

where tlife(hpo) is the lifetime of circular orbit with initial radius 
fO=rpo=f?E + h p @  

Making use of (14.44) and (15.94), we write 

(15.96) 

From (15.95) and (15.96) it follows that for  hpo=const the lifetime rapidly 
increases with initial eccentricity (for moderately eccentric orbits, the 
increase is approximately proportional to e?) .  

15.12. LIST OF APPROXIMATE LIFETIME FORMULAS 

In keeping with the foregoing results, the orbits of artificial Earth 
satellites should be divided into three groups fo r  purposes of lifetime 
determination: 

using the series expansions (14.24) of the functions p ( h )  and >(h), this 
(a) low-eccentricity (nearly circular) orbits, whjch a r e  investigated 
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being equivalent to the condition 

(b) moderately eccentric orbits, satisfying the condition 

(c) highly eccentric orbits, having 

For each of these groups, we can write approximate expressions of 
two kinds: 

(i) formulas for the determination of tlife from known c and P; 
(ii) formulas for the determination of fllfe from known 6 P o .  

The formulas under (i) a re  conveniently used in a preliminary estimate 
of the satellite lifetime before launch, whereas the formulas under (ii) can 
be applied for orbited satellites. 

should be calculated from (15.88) and (15.89), and for orbits of group (c) 
from (15.71) and (15.73). 
be preferably written in a form analogous to (14.54). 
of (14.54) and (15.19), we can show that 

As we have previously remarked, the flife for orbits of groups (a) and (b) 

For orbits of group (a) relation (15.89) should 
Then, making use 

For orbits of group (b), it is advisable to replace the a i r  density at the 
height hmoin (15.88) with a i r  density at the height hpo. 
(15.19), (15.72), (15.81), and (15.87), we find 

Making use of 

OPpo)  0 - exp (Yo) 
tllfe= c 2 (1 -eo) v22xv0 I ,  (yo) * 

We thus obtain the following approximate formulas for tilfe: 

for  vo< 1 and e , < z  H 

(15.97) 

(15.98) 

(15.99) 
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Here 

(15.100) 

$2 (eo) = - ' 

and YO,  F(hmo),  k ( h m o ) ,  $(eo).  $i(eo), @(hpo),  ecr a r e  determined from (14.41), 
(14.55), (15.19), (15.72), (15.74), (15.77), and (15.93). 

Note that for isothermal atmosphere (H=const) ,  relations (15.97) and 
(15.98) a r e  identical. 
variable H, it is advisable to calculate the functions F ( h )  and k ( h )  entering 
(15.97), not from (14.44) and (14.56), but preferably from (14.41) and (14.55). 

Appendices 2 through 5 tabulate all the auxiliary functions entering the 
right-hand sides of (15.97) -( 15.99). However, in machine computations, 
it is better to determine these functions directly from the analytical 
expressions listed above. 
computed from expansions (15.79). 
(15.26) and (15.39) in (15.100), we find 

If H is variable, they give different results. With 

The functions $(e) and $i(e) a re  then conveniently 
For F,(v) ( i  = 1, 2, 3, 4), by substituting 

v2 vk v8 
l+T+$+rn+ 1 . .  

vz v' F&)= 1.5 
v ( l + 7 + m +  ...) ' 

for v>1.5 
1 

3 1 15 1 105 1 1 - - . - - - . - - - . - - 
8 v 128 v2 1024 v3 

Fa (VI  = 

(15.101) 

(1 5.102) 
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Chapter 16 

THE EFFECT OF LUNISOLAR ATTRACTION ON THE 
MOTION OF ARTIFICIAL EARTH SATELLITES 

16.1. EQUATIONS OF MOTION OF A SPACE VEHICLE 

In analyzing the gravitational pull of the Sun and the Moon on artificial 
Earth satellites, we shall use the general equations of motion of a space 
vehicle in the field of gravity of several attracting bodies 1 2 1 .  Since all 
the attracting bodies in the solar  system a re  nearly spherical, their 
gravitational forces wi l l  be determined from expressions of the form (4.3) 
(with some corrections introduced if  absolutely necessary). 

Let p be the vector defining the position of the space vehicle in some 
interial frame. Making use of (4.3), we write i ts  equation of motion in 
this frame as 

n PL-P F 
P = E] -+ m 

i s 0  

(16.1) 

where pi (f = 0 ,  1, 2, . . . , n) a re  the vectors which define the gravitational 
centers of the attracting bodies, pi coefficients equal to the product of the 
gravitational constant and the mass of the corresponding attracting body, 
m the mass of the space vehicle, F the resultant of all the additional forces 
on the vehicle, attributable to the nonspherical figure of the attracting 
bodies, atmospheric drag, radiation pressure,  etc. 

frame, but in some nonrotating frame having its origin at the center of 
one of the attracting bodies. We call this body the p r i m a r y ,  and 
assign to it the subscript i =  0. For artificial Earth satellites, the Earth 
is commonly chosen a s  the primary. 
motion of space vehicles whose mass is negligible in comparison with the 
mass of the primaries.  In the following, we therefore ignore all possible 
influence of the space vehicle on the primary. The equation of motion of 
the primary in an inertial frame is then written in the form 

The motion of space vehicles is generally analyzed, not in an inertial 

Note that we a re  dealing with the 

(1 6.2) 

where Fo is the resultant of all the additional forces on the primary, and 
mo its mass. 
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Let r be the vector which defines the position of the space vehicle in 
a frame connected with the primary. Clearly, 

r-p-p,. (16.3) . 
Subtracting (16.2) from (16.1) and making use of (16.3), we obtain the 

equation of motion of the space vehicle in a noninertial frame connected 
with the primary: 

n 
r l - r  i= -Po ++ I: Pi (- -&) + f -2 I 

i=1 

(16.4) 

where rl=pr-po a re  the vectors which define the position of the other 
attracting bodies relative to the primary. 

Fr = 0. One of the principal exceptions is the Moon, whose motion must 
be calculated with allowance for the Earth 's  nonspherical figure. 

We shall show in what follows that for motion in a certain neighborhood 
of the primary, the f i rs t  term in the right-hand side of (16.4) is considerably 
greater than the sum total of the other terms.  
for the great majority of coasting artificial Earth satellites. 
term in the right-hand side of (16.4) is therefore called the u n p e r t  u r b e d 
( n o r m a l )  a c c e l e r a t i o n ,  whereas the sum of the other terms is the 
p e r t u r b i n g  a c c e l e r a t i o n .  All the attracting bodies, with the 
exception of the primary, a r e  referred to a s  the p e r t u r b i n g bo  d i e s . 

For most attracting bodies in the solar system, we may safely take 

In particular, this is true 
The f i rs t  

16.2. SERIES EXPANSION OF THE PERTURBING 
ACCELERATION IN P O m R S  OF r/ri 

Let r and ri ( i  = 1, 2,. . . , n )  be the magnitudes of the corresponding 
vectors; we consider the case of motion close to the primary, when 

r << Ti.  (16.5) 

To simplify the discussion, a system with a single perturbing body is 
All the results of this section can be easily generalized assumed (n = 1). 

to the case of several  perturbing bodies. We also take 

F = Fo = 0. 

Under these assumptions, equations (16.4) take the form 

where f t  is the perturbing acceleration: 

(16.6) 
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We remember that 

- 312 I rl - r I -3 = [(rl - r) (rl - r)l-'/l= r;3 ( 1 - 2 3 + ") , (16.8) 
r: r: 

and also that, in accordance with (16.5), 

<< 1. 
E='-r 2r. r 

rt r: 

In writing the right-hand side of (16.8), we therefore make use of 
Newton's binomial expansion 

(16.9) 
3 15 (1 -E)-"= I + ~ E + ~  EZ+ . . . 

Retaining terms of the second order  of smallness relative to r/ri, we write 

Substituting in (16.7) and retaining te rms  of the second order  of smallness, 
we find 

f l  = f 1 1  +flZ+ * * * *  (16.10) 

where 

(16.11) 

The vectors f l l  and flz a re  p e r t u r b i n g  a c c e l e r a t i o n s  of  f i r s t  
a n d  s e c o n  d o r d e r , respectively. 
in the directions rand  f l .  and a the angle between these directions. Then 
(16.11) is written a s  

Let r0 and 9 be the unit vectors 

I f l l  = + '(3 cos a .  < - 1"). 
rl rl 

Putting 
r 

g = P o F  

(16.12) 

(16.13) 

for the normal acceleration, and g, f i t ,  and f i 2  for  the magnitudes of the 
corresponding vectors, we can easily show that 

(16.14) 

g = k  f -PI r 
11 - 7- - 91 (a)* 

'pl (a) = V(3 c0sa.l;) - roy = -jl3 cos* a+ 1, 

t2 f l2  = 4 q ( P z w ,  
rl rl f l  rl 

9 2  (a) = 2/[(?- 15 cos2 a -;) < - 3 cos a.P 1/5 cos4 a - 2 cos2 a+ 1. 
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Hence 

Furthermore, from (16.14) we have 

(16.15) 

(16.16) 

Note that for close satellites ( r < r , ) ,  the perturbing acceleration produced 
by the gravitational pull of the second body is much l e s s  than the gravitational 
acceleration of that body, g,==p,/r;. Indeed, from (16.14) and (16.16),wehave 

This is so because, in accordance with equation (16.4), the perturbing 
acceleration is a geometrical difference between the gravitational 
accelerations se t  up by the perturbing body at the center of the primary 
and at the point occupied by the space vehicle. 

16.3. THE SPHERE OF ACTION OF ATTRACTING BODIES 

From (16.15) and (16.16) it follows that the ratio of perturbing-to-normal 
In the accelerations steeply increases as  we move away from the primary. 

f i rs t  approximation, this increase is proportional to (r /r1)3.  
vicinity of each attracting body there is always a region where the attraction 
of that body is prevalent, while the contribution from other attracting bodies 
reduces to comparatively small  perturbing accelerations, which can often 
be ignored. 

113, 321. We shall consider one of the definitions, which introduces the 
so-called s p h e r e  o f a c t  i o  n . The gravitational system will  comprise 
only two attracting bodies Mo and Mi, the mass of the body Mo being much 
less  than the mass of the body Ml, i. e., 

ILO<<CLI. (16.17) 

Hence, in the 

There are  several  different techniques for the definition of these regions 

This is a typical case encountered in the analysis of motion of a space 
By considering the pair "natural satellite - vehicle in the solar system. 

planet", we can establish the effective region of gravitational pull of the 
natural satellite, by considering the pair  "planet - Sun", we establish 
the region of planetary pull and by considering the pair "Sun - Galaxy", 
we find the effective range of the Sun. 

of the space vehicle. We also put (Figure 16.1) 
Let Oo and O1 be the centers of the two attracting bodies, and D the center 

- 
07 = r,, 0,D = r,, 07, = c, 
Irol =ro, lrll = T I ,  IcI =c .  
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From (16.6) it follows that the equation of motion of the vehicle D in a 
frame connected with the body Mo is 

ro = n"+fl* (16.18) 

and in a frame connected with the body M,, 

(16.lQ) 

where go and 61 are  the respective normal gravitational accelerations, and 
f ,  and f d  the corresponding perturbing accelerations. 

FIGURE 16.1. Mutual disposition 
of the space vehicle D and the 
attracting centers 00 and 0, 

The sphere of action of the body Ad,, is defined a s  the region where 

A < &  
6 0  g, ' 

and the sphere of action of the body MI is the region where 

- > g .  ir f 
SO 

Here 

The sphere of action of an attracting body is thus the region of space 
where the perturbing-to-normal accelerations ratio is minimal if  that 
attracting body is selected as the primary. 

clearly given by the equality 
The boundary of the spheres of action of the two attracting bodies is 

(16.20) 
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(16.17) it follows 
r words, on the b 

is boundary is much closer to E/r, 
y of the spheres of action, we have 

roe%, c w r i .  

Hence, making use of (16.7) and (16.14) a remembering that r, = c+ r,, 
we write the following expressions for the magnitudes of the corresponding 
accelerations (gi, f o ,  and fi are  given to first approximation): 

(16.21) 

where u is the angle between the vectors ro and 07, = - c. 

of the spheres of  action: 
Substituting in (16.20), we obtain an approximate equation for the boundary 

(16.22) 

Note that 

1 > (1 + 3 cos2 a)-"]' > 1 = 0.87. 
Irz 

This t e rm is maximal for a= k n / 2  and minimal for a=O; n, 
The sphere of action of the lesser  body is thus close to a spherical 

surface: it i s  a slightly oblate figure of revolution, whose minor axis points 
to the greater attracting body. 

pairs of attracting bodies, according to G. A. Chebotarev 1 3 2 1 ,  
Table 16.1 lists the maximum radii of the spheres of action for various 

TABLE 16.1 
I 

distances between the att 
a t  attracting body in whos 
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accelerations ratio is maximal when the vehicle crosses  the common 
boundary of the two spheres of action. 
that on the boundary 

From (16.2 1) and (16.22) it follows 

go g1 

For  a= 0, the ratio is maximal: 

(L) I (A) = 1.32 (E)'". 
go max gi max 

The maximum perturbing-to-normal accelerations ratio thus depends 
only on the mass ratio of the attracting bodies: it is independent of the 
distance between them. This ratio decreases with decreasing polpl. In 
other words, the greater  the mass ratio of AI, to iMo, the smaller  the 
perturbing influence of one body on motion in the sphere of action of its 
counterpart. 
accelerations ratios for various pairs  of attracting bodies, 

From (16.21) it follows that as we move away from the boundary of the 
spheres of action, the perturbing -to - no rmal  accelerations rat  io decreases . 
As we approach Mo, the ratio f,/g, decreases, to first approximation, as  r,3, 
and a s  we recede beyond the sphere of action of this body, the ratio fo/g, 
is seen to  vary a s  1 /  r i .  

the gravitational pull of Mi is actually greater than that of Mo (i. e., &',>go). 
For  example, the gravitational pull of the Sun exceeds the gravitational 
pull of the Earth already at distances of 256 .103-265 . l o3  km from the 
Earth's center, while the maximum radius of the Earth's sphere of action 
is 913 .103-944 .103km / 3 2 / .  In particular, in the Moon's orbit, the pull 
of the Sun is much greater than the pull of the Earth, and yet the real  lunar 
orbit is much closer to the unperturbed orbit of Earth 's  satellite than to 
the unperturbed orbit of an independent planet. 
Moon is f a r  inside the Earth's sphere of action. 

Table 16.1 lists the maximum perturbing-to-normal 

The sphere of action of the lesser  body Mo also comprises regions where 

This is so because the 

16.4. 
OF ARTIFICIAL EARTH SATELLITES 

LUNISOLAR PERTURBATIONS IN THE MOTION 

We shall only consider the motion of satellites orbiting at heights 
h,< 100,000km above the Earth's surface. 
can show that for these satellites the perturbing effect of all celestial 
bodies, with the exception of the Sun and the Moon, is invariably negligible. 
Preliminary estimates of the lunisolar perturbations can be obtained from 
Table 16.2. This table lists the maximum perturbing accelerations f .  and 
their ratios to the gravitational acceleration g of the Earth at various 
heights h .  The calculations were made from the first-order relations 
(16.14). 
(relative to g) of the maximum perturbations produced by the second zonal 
harmonic of the geopotential and by gravity anomalies. The perturbations 
due to the second zonal harmonic a re  obtained from the approximate 

F rom relations (16.141, we 

For purposes of comparison, the table also gives the magnitude 

295 



expressions (12.18), and the gravity anomalies a re  estimated from 

Maximum perturbing acceleration 

where fmnx(h) is the maximum perturbing acceleration at the height h, frnns(0) 
the maximum gravity anomaly at the ground, R the mean radius of the 
Earth. This estimate is much too high, 
since most of the te rms  in the expansion (12.27) decrease with the height 

We take fmax(O)= 6 .10-4m/sec2. 

hl axiinum perturbing acceleration-to-g ratio 

K h much faster than (m)4 

for solar 
perturbanon 

TABLE 16.2 

for lunar 
perturbation 

Height h ,  km 

5.1.10-8 
1.2 . io -  
8.6 . lo- 
3.6 .I 0-6 

2.4.1 o - ~  
3.5.1 OP5 

0 
2,000 

10,000 
20,000 
50,000 

100,000 

1.1 .io- 
2.5 * 1 0- ’ 
1.9.1 0-6 
7.9.1 O-G 
7.7.1 Om5 
5.2.1 0-4 

solar, 
m/sec2 

0.50 
0.66 
1.3 
2.1 
4.4 
8.3 

1.1 
1.4 
2.8 
4.5 
9.8 

18 

perturbdt ion 

harmonic of 

3.4.1 0-3 
1.9.1 0-3 
5.1 .1 0-4 

4.3.1Oq5 
2.0.1 o - ~  

1.2.1 o - ~  

6.0.10- 
3.5. lo-’ 

3.5 1 0-6 
7.Y.10-7 

9.1.10-6 

2.2.10- ’ 

We see from the table that the perturbing acceleration produced by the 
gravitational pull of the Moon is some 2.2 times a s  large a s  the solar 
perturbing acceleration. 
of kilometers and less ,  these perturbations a r e  much less  than gravity 
anomalies, which a re  commonly ignored even in exact calculations. 
heights above the 20,000 km level, the lunisolar perturbations a re  greater 
than gravity anomalies, and above the 50,000 km, they exceed all the other 
geopotential perturbations. 

can be estimated from relations (1 6.14). The ratio of each successive 
te rm to its predecessor is found to be of the order  rJr,. 
that the ser ies  which describes the effect of solar perturbations on the 
motion of artlficial Earth satellite converges very rapidly, and all t e rms  
but the first  can be omitted in most cases.  
representing the lunar perturbations converges much more slowly. 
at heights of 50,000-100,000 km, the second te rm constitutes a few tens 
of percent of the first  term. The first  t e rm i s  suitable for crude estimates 
only. 

For satellites flying at heights of a few thousands 

For 

The influence of the second and higher te rms  in the expansion (1 6.10) 

Hence it follows 

The analogous ser ies  
Already 
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16.5. PROJECTIONS O F  THE PERTURBING 
ACCELERATION ON THE SATELLITE'S 
ORBITAL AXES 

rl=ri(%ii+d+y&)+ 
r =  r ( icos6i j s in  6), 

So == i c o s  6 + j s i n  6, 
Ta=-is in6+jcos6,  

W o  = k, 

Since the perturbing accelerations for the artificial Earth satellites 
under consideration are  invariably small, we shall only consider the 
secular and the long-periodic perturbations of orbital elements, i. e., we 
calculate the resultant change in orbital elements during one circuit of 
revolution. 
Sun w i l l  be treated independently, and the corresponding perturbing 
accelerations will be found from the first-order relations (1 6.1 1). 
analysis, we follow the treatment of M. L. Lidovich / 191. 

should first find the projections S ,  T, W of the perturbing accelerations 
on the satellite's orbital axes (see Figure 2.1) .  
rectangular frame OEqC introduced in Sec. 5.5 (see Figure 5.5). 
be the unit vectors along these axes, So, To, W 0  the unit vectors in the 
directions of S, T, W and X I ,  Q, n3 the direction cosines of the vector rl 
relative to the axes E ,  q, 5 .  

The perturbing effects attributable to the Moon and to the 

In our 

To calculate the secular orbit perturbations from (2.16) o r  (11.39), we 

We shall operate in the 
Let 1, j ,  k 

Then, from Figure 16.2, 

' 

(16.23) 

FIGURE 16.2. Resolution of perturbing acceleration 
along the satellite's orbital axes. 

Let y be the angle between the vector r, and its  projection 00; on the 
orbital plane Eq, and a the angle between this projectiqn and the orbit 's 
major axis 05 (see Figure 16.2). Clearly, 

x ,  =cosy cos a, 

x3 = sin y, 
x2 =cos y sin a, 

cos y = 2/=. } (16.24) 
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r, . r = rlr(xl cos 6+x,  sin a) = 

r, SO= rl (x,  cos e+% sin 8) = 

rl. TO=r,(-xx,sin6.+x2cos6)= 

= f I f  cos y cos (e - a), 

= f ,  cos y cos (B. -a), 

= - r l  cos y sin (6- -a), 
r, . Wo = rln3 = rl sin y, 
r,.SO=r, r .  P = r .  WO=O. 

(16.25) 

(16.24a) 

where p is the parameter of unperturbed orbit, and A, gi, $i ( i  = 1, 2 , .  . . , 5) 
a re  defined by 

(16.26) 

Note that g1 is the magnitude of the acceleration imparted to the primary 
by the perturbing body. 

around the Earth is small  in comparison with the period of the Moon, a s  
wel l  a s  with the period of the Earth's revolution around the Sun. For 
these satellites, the direction of the vector r,, to first approximation, is 
constant during one complete revolution around the Earth. In our 
determination of the change in the"orbita1 elements during one circuit, 
the parameters xi ,  x2, xs, a, and y a re  therefore assumed constant. 
problem with variable parameters is considered by M. L. Lidov 1191. 

In the following, we  shall only consider satellites whose orbital period 

The 

16.6. CIRCULAR ORBIT PERTURBATIONS 
DURING ONE CIRCUIT 

In our analysis of motion in circular orbit of radius r ,  the axis O& 
(Figure 16.2) points to some initial position Do. The angle .B entering 
expressions (16.23) -( 16.25) is then replaced with the angle rp reckoned 
from the point Do. Expressions (16.25) are written in the form (3.5), 
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putting for the expansion coefficients 

(16.27) 

Comparing these expressions with the conclusions of Sec. 3.9 ,  we see 

The perturbation in orbital period is 
that the perturbations of circular orbit during one circuit alter the orbital 
period and rotate the orbital plane. 
specified by the coefficients So and T,, and the orbit plane rotation is 
determined by the coefficient Wi. 

period is determined from (3 .10)  and (3 .40) ,  which give 
The deviation AP of the real  (sidereal) period from the unperturbed 

where P is the period of revolution in unperturbed orbit. 
use of (16.21)  and (16 .27) ,  we find 

Hence, making 

-i;=z[ ' l r 3  3cos2y ( 1 - ~ c o s 2 u ) - 2 ] .  4 (16.28)  

The corresponding displacement 61 along the orbit, per one circuit of 
revolution, is given by 

AP 
(16.29) 

which follows directly from (1 .4)  and ( 1 . 5 ) .  
From relations (3 .34) ,  (16.27) and Figure 16.2 we see that during one 

circuit, the orbital plane rotates about an axis which is the projection of 
the vector r l = 0 ~ ,  on the orbital plane Eq, i. e., about the axis 00; 
(Figure 16.2) .  If viewed from the tip 0; of the projection, the plane appears 
to rotate counterclockwise for y>O and clockwise for y<O. 

maximum lateral displacement 6 z  are  determined from (3.35) and (16 .26) .  
which give 

The angle of rotation 8$ during one circuit and the corresponding 

(16.30)  

From (16.28) -( 16.30) we see that the relative perturbations of orbital 
U elements ($.. T ,  W=f) increase in proportion to r8. The absolute 

values of these perturbations increase even faster (81 and 6zas r4, and 6 P  
a s  r9/*9.  

AP and 61 a re  maximal at a= T J 2 ,  Y = 0, whereas 6 9  and 82 a r e  maximal 
From (16.27) and (16.29) it follows that for constant r,  the perturbations 
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for  Y = n / 4 .  Making use of (16.15), (16.16), (16.28), and (16.30), we find 

Circular orbit 
height h, km 

(16.31) 

Maximum perturbations 

h!, Ill hz, m h h s e c  of arc B p ,  
I I I 

where 1% lmax is the maximum perturbing-to-normal accelerations ratio 

listed in Table 16.2. 
Table 16.3 gives the peak perturbations AP, 61, 62, and6J,produced by 

the Moon's gravitational pull, a s  calculated from these formulas (to obtain 
the corresponding solar perturbations, the figures of Table 16.3 should 
be divided approximately by 2.2). We see from the table that for satellites 
flying in circular orbits at altitudes of a few thousands of kilometers and 
less ,  the lunisolar perturbations a re  negligible. 
of 10,000 km, these perturbations, however, become noticeable. 
increase of orbit height results in a steep rise of these perturbations, 
which eventually reach substantial magnitudes. 

At altitudes of the order  
Further 

0 
2,000 
10,000 
20,000 
50,000 
100.000 

TABLE 16.3 

9.1 7.3 1.7 0.05 
3.2 21 5 0.12 

0.55 2.1 .io3 490 3.8 
16 49 .io3 10 . los  38.0 
290 570 . io3 130 . io3  250.0 

6.3.10-' 310 72 0.9 

I I 

16.7. ELLIPTICAL ORBIT PERTURBATIONS 
DURING ONE CIRCUIT 

We calculate the elliptical orbit perturbations from the approximate 
relations (1 1.39). 
formula for  the change in the semimajor axis during one circuit: 

Making use of ( 11.28), we can write a similar approximate 

I 

?Jl 

&=- *a / (+sin@ +")diE. 
1 -e2 g r  b 

(16.32) 

In evaluating the right-hand sides of (1 1.39) and (1 6.32), we shall assume 
that the orbital elements and the vector r, remain constant during the 
particular circuit of revolution. Under these assumptions, applying 
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relations (4.19) and (16.25), we see that the problem reduces to integrals 
of the form 

2n 
 COS^ 6 slnl6 

JIZ#!!=S All 
0 

where n, m, I a re  some positive integers, and A = A ( 6 ) = z i s  determined 

from (16.26). 

an odd function of the angle 6). 
and (16.32), we find 

It is  easily seen that Jn,, , ,=O for odd 1 (since in this case the integrand is 
Thus, upon substituting (16.25) in (11.39) 

+ A3 

We substitute 1 -cos2* for sin2* in the right-hand sides and also apply 
expression (16.26) for A, which gives 

COSm 6 = (+), . (16.34) 

The right-hand sides of (16.33) thus reduce to integrals of the form 
Zn 

d6 Jn=[m (n=O, 1, 2, 3, 4). 
0 

We now make use of the well-known formulas 1251  

Then 
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From the recursion formula (16.36) and from equality (16.35), we find 

(16.37) 

Making use of (16.34) and (16.37), we reduce equalities (16.33) to final 
expressions for the perturbations of orbital elements during one circuit: 

(16.38) 

In deriving these formulas, we retained only the first term in the 
expansion (16.10) of the perturbing acceleration and neglected the variation 
in the vector rl during one revolution of the satellite. In calculating the 
effect of the lunar pull for  comparatively low-flying Earth satellites (with 
orbit heights of some 50,000-100,000 km), either of these assumptions 
involves a considerable inaccuracy. Higher precision can be achieved 
by using M. L. Lidov's formulas, which have been derived on the basis of 
second-order expressions, assuming a variable r ,  1191. 

16.8. 
PERTURBATIONS DURING ONE CIRCUIT 

AN ANALYSIS OF ELLIPTICAL ORBIT 

From (16.38)  we see that, a s  a first approximation, the semimajor axis 
is free from secular perturbations ( 6 a = O ) .  This is a direct consequence 
of our assumption that the vector rl and the orbital elements a r e  all constant. 
Indeed, in this case the motion is in a conservative field of force, so that 
the total mechanical energy of the satellite in orbit is conserved. Upon 
completing one revolution around the Earth, the satellite returns to its 
initial position (the orbital elements being constant), so that its flight 
velocity also remains constant. Hence, making use of (5.15), we find 
6a=0.  
rl is variable. However, calculations show that for  the artificial Earth 
satellites under consideration, the increment 6a is small in comparison 
with the variations in other orbital elements. 

by an additional expression. If the perturbing body is fixed in space, the 
projection of the angular momentum vector L of the space vehicle about the 

Lidov 1191 has shown that this equality does not apply if the vector 

The increments 6e ,  6i, and 6 Q  derived in the previous section a re  related 
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point 0 on the direction rl=OT1 is constant in time. 
this projection, we have 

L, = (r x rj, i,= e .  (rx rj, 

Indeed, putting L j  for 

where r? is the unit vector along rl. 
that for n = l  and F = P o = O ,  

On the other hand, from (16.4) we have 

r=  Ar+ Br,, 

where A and B are  some scalar  factors. 
expression for ii, we find 

Substituting this equality in the 

L1 = 0, L1 = const, 

Making use of (4.4) and (5.10), we write the following expression for  the 
magnitude of the angular momentum vector: 

L = I r X ~ I = c = I / I L P = ~ ~ u ( l - e Z ) .  

Since the angular momentum vector L is perpendicular to the orbital plane, 
i.e.,  points along the axis 05, we have 

Seeing that &a=0,  we write 

e be - + bx, = 0. (16.39) 

To find an expression for  8x3, we make use of the nonrotating frame Oxyz 
depicted in Figure 1.2. 
X, y, z and E, q. 

The matrix of the direction cosines for the axes 
is given in Sec. 5.5. Let IlAII denote this matrix. Then 

( 16.40) 

(16.41) 

where ai, a2, a3 are  the cosines of the angles between the vector ri and the 
axes x ,  y, z, and IIAII* is the transpose of the matrix IIAII. Hence, i f  the vector 
r, is fixed in the frame Oxyz (ai=const, u2= const, a3=const), we find 

I x,= a, sin Q sin i -a2 cos Q sin i + %cos i, 
b x , = ( a , c o s Q s i n i + a , s i n Q s i n i ) b ~ +  

+(a, sin Q cos i -%cos Q cos i - cg sin i)bl. 

Substituting z,, a2. a 3 ,  we find 

(16.41a) 

(1 6.42) 
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whence, applying (16.39), we finally w r i t e  

e ije 
1 -e2 

-%- + (xl cos w - x Z  sinu)bQ sin i - (x ,  sin u+ x2 cos w) bi = 0. ( 16.43) 

Equality (16.43) is useful for verifying the results of a numerical 
calculation of Ge,8& 8i. 
(16.38) in (16.43). 

6 ~ ~ ~ 0 .  
during one circuit reduces to its rotation around the vector r,=Oo,. If 
this rotation is small, it can be resolved into two component rotations: 
around the normal to the orbital plane and around the projection of the 
vector rl on that plane. 
orbital plane, and the latter is equivalent to the rotation of the circular 
orbit plane derived in Sec. 16.6. 

plane in a general case. We introduce an angle x ,  defined by 

Its validity can be established by substituting 

In particular, for  circular orbit ( e = O ) ,  relation (16.39) takes the form 
In other words, the change in the orientation of the orbital plane 

The former does not alter the orientation of the 

We now determine the position of the axis of rotation of the orbital 

(16.44) 

Then expressions (16.38) for 6 Q  and 6i can be written a s  

Making use of (9.53), we find that this perturbation of the orbital plane 
produces rotation through an angle &$ around an axis in the orbital plane, 
which makes an angle x with the major axis OE. 

the angle a between the axis OE and the projection of the vector rl on the 
orbital plane. 
corresponding equality for circular orbit, (1 6.30). 

orbits rotates around an axis which is close to OE. 
SI# sharply increases as the eccentricity approaches unity (since v m + O ) .  

The variation of perigee height h,  is of considerable significance in 
some problems. In particular, for low-perigee orbits, a substantial 
change in the perigee height /zp may result in termination of satellite's 
life. To find the change Ghpin perigee height during one revolution, we 
make use of (5.3), (16.24), (16.25), and (16.38), which give 

From (16.24) and (16.26) we find that for  e - 0 ,  the angle x approaches 

The expression for the angle of rotation 69 reduces to the 

For e+ 1, ~ " 0 .  In other words, the plane of highly-elongated elliptical 
The angle of rotation 

(16.46) 

We see from this formula that the perigee height increases when the 
projection of the vector ri on the orbital plane Eq is in the first o r  the 
third quadrant (O< a < ?r/2 o r  r < a  < 3 ~ 1 2 )  and decreases if  this projection 
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is in the second o r  the fourth quadrant ( n / 2  < a < n or 3n12 < a < 2n). 
maximum perturbation 16hplmax is attained for y=O, a= a14 + n nl2  (where n 
is an integer). 

Table 16.4 lists the values of 16hp(mx attributable to the lunar pull for 
various perigee and apogee heights of the orbit (to obtain the corresponding 
solar  perturbations, the figures of Table 16.4 should be divided approximately 
by 2.2).  We see from the table that for  the relevant satellites the variation 
6hp  is fairly insensitive to the minimum flying height hp, and is principally 
determined by the maximum flight altitude ha( excepting the case hp--+ha, 
when 6hp-0) .  For satellites orbiting at  heights of a few thousands of 
kilometers and less ,  6hp is small ( a  few meters). As  h,increases, this 
perturbation steeply r ises ,  reaching a few kilometers or  even tens of 
kilometers for ha=50,000 - 100,000 km. 

The 

200 2,000 10,000 

TABLE 16.4. 

20,000 50,000 

2,000 
10,000 
20,000 
50,000 

100,000 

- - - 2.5 m 0 
- - 34 m 31 m 0 

- 1 8 1  m 206 m 243 m 0 
2.4 km 2.8 km 4.1 km 5.1 km 0 

21.5 km 24.6 km 36.2 km 41.7 km 65.5 km 

To first approximation, these perturbations during one circuit a l ter  
the position and the height of the perigee point (the semimajor axis of the 
orbit remaining constant), and also rotate the orbital plane around some 
axis in that plane. All perturbations a re  proportional in magnitude to 

Moreover, for e e l ,  the perturbation 6e  is proportional to the eccentricity 
e, and the perturbation in perigee height is proportional to the linear 

eccentricity ae = 9 . 
a certain deviation of the actual orbital period from the unperturbed period 
(see Sec. 16.6). 
in the satellite’s positions in actual and unperturbed orbits. 

In addition to the above perturbations of orbital elements, there is also 

This deviation of course leads to a growing discrepancy 

16.9. ELLIPTICAL ORBIT PERTURBATIONS 
DURI&G SEVERAL REVOLUTIONS 

Let sl ( j  = 1,  2,. . . , 6) be the orbital elements ( ~ ~ = a .  92=e .  9 3 = i .  q4=6), 

95= 9, %=rP). 
during one revolution can be written a s  

Expressions (16.38) for  the perturbations in these elements 
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where the coefficients ( k  = 0, 1, 2,  . . . , 5) a re  defined by (16.26) (Bo=  I), 
and Fjh (i= 1, 2 , .  . . , 6; k =  0, 1, 2 , .  . . 5) a re  some functions of the orbital 
elements q j .  

We see from Tables 16.3 and 16.4 that the perturbations 6qj are  
comparatively small. 
elements q, can be assumed constant during several revolutions of the 
satellite around the Earth, and we put Fjk=const. 
however, a re  highly variable due to the comparatively fast motion of the 
perturbing body relative to the Earth. Hence it follows that the variation 
of the orbital elements in n circuits can be determined from formulas of 
the form 

Therefore, to f i r s t  approximation, the orbital 

The coefficients $k, 

r,=149.6. 1OGkm,P,=365.26s.d,r2 0 =% P ,  ' 

p, =i 3.33 . l@po. rg = 384000 km, 
Pg=27.32s.d, h a = - q - ,  2n p u = 8 1 ; 3 .  1'0 

J 

(16.48) 

where 1 is the current circuit number, and $kl are  the values of the 
coefficients Ijk during that circuit. 

$I vary smoothly 
with integration: 

To calculate the sums h . P k l ,  we make use of the fact that the coefficients 

from circuit to circuit, so that summation can be replaced 

(1 6.49) 

where P is the period of revolution around the Earth, and f = n P  the flight 
time. 
elements during several circuits: 

We obtain the following expressions for the perturbations of orbital 

(16.50) 

where F,,, (a, e,  i, w) a re  the multipliers of $A in expressions (16.38) for 6q,. 
In determining the time-dependence of the coefficients pk, we assume that 

the perturbing bodies (the Sun and the Moon) describe circular orbits around 
the Earth, moving with constant angular velocities. 
characteristics of these orbits (the radius ri, the orbital period P I ,  the 
angular velocity of revolution around the Earth hi, and the coefficient p) 
have the following numerical values: 

The principal 

(16.51) 

Here 0 denotes the parameters of the Sun, and C the parameters of the 
Moon; po is the gravitational acceleration of the Earth, from (12.12). 

case of perturbing bodies which describe elliptical orbits /19 / .  
Note that the results obtained in the following can be generalized to the 
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We introduce a right-hand rectangular system of axes Oxyz, with its 
origin at the Earth's center 0. The axis Ox points to the perturbing body 
O,, so that the plane Oxy coincides with the orbital plane of the perturbing 
body, and the axis Oz is directed at right angles to this orbital plane (to 
the north). The orientation of the orbital plane and the position of the 
perigee point a r e  defined by the inclination i, the longitude of the ascending 
node Q ,  and the argument of the perigee w, which a re  all reckoned from 
the plane Oxy and the line Ox (Figure 16.3). 

FIGURE 16.3. Transformation from the coordinates Oxyr connected 
with the mutual disposition of the attracting bodies 0 and Ol to  the 
coordinates OEqf connected with the satellite's orbit. 

It follows from our  assumptions that in calculating the right-hand side 
of (16.50) we may take 

03 const, i = const, Q = Qo -- I # ,  (16.52) 

where QO is the initial longitude Q ,  and AI is the angular velocity of the 
perturbing body in its relative orbit, from (16.51). 

of the axes Ogq,rls relative to the frame Oxyz. 
direction cosines is given in Sec. 5.5. 
the axis Ox, then, applying this matrix, we write the following expressions 
for the direction cosines of r i  relative to the frame Ogq;r15 : 

From Figure 16.3 we see that the angles Q, i, w specify the orientation 
The matrix of the corresponding 

Since the vector ri=O-i points along 

(16.53) I x1 =cos Q cosw - sin Q cos i sin w, 
xz=-  cos Q sinw - sin Q cos i cosw, 
xg = sin Q sin i. 

Hence, making use of (16.26) and (16.52), we find that the expressions 
for pk ( k =  0, 1, 2, . . . , 5) a r e  sums of products of sin2 6 2 ,  cosa Q ,  and 
sin Q cos Q by some functions of the angles w and i .  Expressing sinZQ, cos2 

Q in t e rms  of sin 2Q and cos 2Qand applying equalities (13.19 a) 
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where OkO, $k2, tk  a re  some functions of 0, i, Go. Substituting these equalities 
in (16.50) and seeing that Aqj=O for  t =O, we obtain the following expression 
for the perturbations of orbital elements: 

Aqj=tAqjo+Aqj2[sin 2(h,t- Ql)+ sin2QjJ, (16.55) 

where Aq,o, Aqjz, Qj a re  some functions of a, e, o, i, Qo. 

perturbations, while the second te rm corresponds to long-periodic 
perturbations of orbital elements. The frequency of the long-periodic 
perturbations is 2hi and their period is P J 2 ,  where Pi is the period of 
revolution of the perturbing body relative to the Earth. 

to the following effects: 

The first term in the right-hand side of (16.55) clearly represents secular 

Lunisolar perturbations a re  thus reduced, in the first approximation, 

(if secular perturbations which a re  proportional to the flight 

(ii) long-periodic solar perturbations with a period%= 182.63 S .  de; 
t i m e t ;  

2 
P 

(iii) long-periodic lunar perturbations with a period += 13.66 s. d. 

There a re  also short-period perturbations, whose frequency is a multiple 

All the foregoing is meaningful only if  the orbital elements remain fairly 
of the satellite's orbital frequency. 

constant during half a revolution of the perturbing body around the Earth. 
Moreover, it must be kept in mind that the rate of secular perturbations 
varies in time. In many cases, these a re  long-periodic variations 1191. 

16.10. SECULAR PERTURBATIONS OF ORBITAL ELEMENTS 

The mean rate  of a secular perturbation is taken a s  the magnitude of 
a corresponding perturbation during one revolution of the satellite around 
the Earth, G , .  Clearly, 

- 
bqj = P Aqjp 

Applying expression (16.52) for  a ,  we write relation (16.55) in the form 

Aqj= %,+ AqjlIsin2(G0 - 91 - Q)+ sin2Gjl. (16.56) 

On the other hand, from (16.50) and (16.52) we  have 

(16.57) 

Equating the right-hand sides of (16.56) and (16.57) and putting Q-Qo+rc, 
we find 

308 



Hence, making use of (16.54), we have 

(16.58) 

The mean rates G, can thus be obtained from (16.38) upon substituting 
The coefficients &O are  calculated from (16.26), (16.53), and pm for pk. 

(16.54), which give 

boo= 1, 

plos= 
1 (cos2 0 + cos2 i sin2 o), 

fi20=q(sin2w+cos2i~os2m), 1 

1 
4 
1 

1 
4 

p30 = -- sin2 i sin 20, 

p40 = -a sin 2i cos Q, 

p60 = - -sin 2i sin a. 

(16.59) 

These expressions enable u s  to proceed with an analysis of the secular 
orbit perturbations. For any given perturbirig body, the perturbations are  
seen to depend entirely on the orbital elements a, e,  i, o of the satellite, being 
independent of the node position St, o r  of the epoch of nodal passage t,(we 
recall that i, o, a, f, a r e  measured in rotating frame Oxyz connected with 
the position of the perturbing body relative to the Earth). Moreover, if  
the semimajor axis a changes, the variations in all the orbital elements 
a r e  proportional to a3. In other words, the rate of secular evolution of 
the orbit is altered, but i ts  trend remains a s  before. The trend of the 
secular orbit evolutions is thus specified by the elements e, i, o. 

is in the second or the fourth quadrant of the orbit (the quadrants a re  
reckoned from the epoch of south-north passage of the satellite through 
the orbital plane of the perturbing body), i. e., if  r / 2  < o <  7c o r  3 n / 2  <io< 27c; 
the perigee height displays a secular contraction if the perigee point is in 
the first o r  the third quadrant of the orbit, i .e. ,  if 0 <m<n/2 o r  n<o<3n/2.  
If we examine the family of all orbits with consta igee and apogee 
heights, hp and ha, and various angles o and i, the mum secular 
perturbation ~ & % ~ l ~ ~ ~ i s  recorded for i = n / 2 ,  o = n / 4 + n r / 2 ,  where n is an 
integer. 

In particular, the perigee height hp grows secularly if the perigee point 

Comparison of (16.46) and (16.60) shows that 
1 I a p l r n a x  = '2 IbhpImax- 
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Table 16.4 can therefore be applied to estimate the dependence of I67;plrnar 
on the maximum and the minimum flight altitudes. 
from that table should be divided by 2 to obtain the corresponding estimates. 

The values of 16hplmax 

16.1 1. LONG-PERIOD PERTURBATIONS 
OF ECCENTRICITY AND PERIGEE HEIGHT 

Of the long-period orbit evolutions discussed in Sec. 16.9, we  shall 
only analyze the variations in the eccentricity e and in the perigee height hp, 
since these perturbations a r e  highly significant in the solution of some 
applied problems (e. g., determination of satellite lifetimes). The techniques 
of this section can be successfully applied to the analysis of long-period 
perturbations in other orbital elements. 

From (16.38), (16.46), (16.47), and (16.57) we  see that the problem 
reduces to the evaluation of the integral 

Q 

s l o  
f B3d% 

Making use of (16.26) and (16.53), we find 

p - _ ~  3 -  4 +P31 

& = - - T j ( l  +cos*i)sin2ocos2Q + 2cosicos20sin2Q]. 
(16.61) I slnzisln20 - 

1 

The first te rm in the right-hand side of the expression for fh represents 
the previously considered secular perturbations. 
period perturbations, we may therefore substitute B3 for  83 in (16.57). Thus, 

I," the analysis of long- 

1 j i i , d a  = 8p cos icos 2 o c o s 2 ~  --(I +coszi) sin 20 sin 2 ~ 1 .  

We introduce the parameters D and q, defined by the equalities 

Now, 

Hence 

D= 1/4cos~icos~2o+(1 +coszi)*sin22o, 
2 cos i cos 20 (1 + cvsz i )  sln 20 

coscp= , sincp= D 
(16.62) 
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Making use of (16.38), (16.46), (16.47), and (16.57), we may write 

;ie = + c (a) D (0, i )  e v n  [cos (2a + 9) - cos(za,+ cp)l, 1 
(16.63) I 

Here i e  and ghpare the long-period perturbations, P and Pi a r e  the orbital 
periods of the satellite and of the perturbing body relative to the Earth, 
and the element Q, is determined from (16.51) and (16.52). 

body can be calculated from the equality 1 2 1  
As a fairly accurate approximation, the orbital period of the perturbing 

Hence, seeing that po >> PO, we may write approximate expressions for the ~ 

orbital periods of the Sun and the Moon about the Earth: 

Substituting in (16.33), we find the following expressions for the coefficient 
C of lunisolar perturbations: 

(16.64) 

Let E and H be the amplitudes of the long-periodic perturbations in 
the eccentricity and the perigee height, respectively. From (16.63) we have 

(16.65) 
15 E = K C ( a ) D ( w ,  i ) e v - ,  H=aE.  

Making use of (16.62), we can show that the coefficient D ( o ,  i) is maximal 
when i = w = O ,  its peak value being 

Dmax 2- (16.66) 

Now, from (16.64) we obtain expressions for the peak amplitudes of the 
long-periodic lunisolar perturbations: 

E ,  = $ $- e v f ,  
B 

H @ m a a = F g a e  Q v m ,  
15 P 

15 P 

Eg m.lX =T 82.3Pge lfi=2, 

Hg max = -ij-F ae V R .  

(16.67) 
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Inserting for P, and Pg their numerical values from (16.51), we obtain 
the ratio of the peak amplitudes of the lunar and the solar perturbations: 

(16.68) 

The peak amplitudes of the long-periodic solar perturbations a re  thus 
approximately 6.16 t imes a s  large a s  the amplitudes of the corresponding 
lunar perturbations. We recall that the maximum solar perturbations 
during one circuit (as  well as  the maximum secular solar perturbations) 
a r e  approximately 112.18 of the corresponding lunar perturbations. 

Table 16.5 lists the peak amplitudes of the solar  perturbations, Eomax. 
Horn,, calculated for various perigee and apogee heights, hp and ha. 
"numerator"of each fraction is the E,,,, , and the "denominator" is the 
Hornax, in kilometers. 
of the long-periodic solar  perturbations a re  mainly determined by the 
apogee height haand a r e  fairly insensitive to the perigee altitude hp(except 
when hp-.ha, giving Hma,-+O, Ernax-.O). 
&>lo5 km, the peak amplitude of apogee and perigee height fluctuations is 
quite substantial (of the order of tens and hundreds of kilometers). 

The 

We see from the table that the maximum amplitudes 

For satellites with apogee heights 

TABLE 16.5 

Apogee height 1 
h a ,  km 

2,000 

10,000 

20,000 

50,000 

100,000 

Perigee height $ km 

2,000 

0 

2.5.10-~ 

6.0.10-~ 

3.1 

10.5 

1.7 . lo-' 
56 

3.6.10-~ 
208 

10,000 20,000 50,000 

The maximum change in perigee (or  apogee) height due to long-periodic 

Ahma, = 2Hmas ( 16.69) 

This change occurs during one quarter of revolution of the perturbing body 
around the Earth (f = Ptl4). 

variation of the perigee height during that time: 

perturbations is - 

Making use of (16.60), (16.63), and (16.66), we find the maximum secular 

(16.70) 
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Hence, applying the above relations between the lunar and the solar  
perturbations, we arr ive at the following estimate for the maximum 
variation of perigee (or  apogee) height during one quarter (P,/4 = 91.31 s. d.) 
for the combined lunisolar perturbation: 

(16.71) Ah (2) < [2 (1 + m) 1 +5(1 + 2.18)]Hotnaxs 7.3Horn.m 

where Hornax is obtained from (16.67) o r  from Table 16.5. 
Indeed, from (16.60), (16.62), 

and (16.63) it follows that the maxima of the secular and the long-periodic 
perturbations never coincide (the secular perturbations a re  maximal when 
i=2o=n/2 and the long-periodic perturbations when i=2o=O). In calculating 
satellite orbits with great apogee heights (ha>104 km) we should nevertheless 
expect considerable variations of perigee height (tens and hundreds of 
kilometers) in comparatively short periods. For orbits with a small initial 
h,, this may lead to a very rapid termination of the satellite life ( i f  the 
orbit evolution tends to reduce the h,). 
variation of the perigee height depends not only on the elements a, e, i, o, 
but also on the longitude Q0, which specifies the initial phase of the long- 
period perturbations. 

This estimate is somewhat exaggerated. 

, 

We see from (16.63) that the actual 

16.12. LONG-RANGE ORBIT E 

In previous sections we  only considered orbit evolution during 
comparatively short periods, when the orbital elements entering the right- 
hand sides of equations (11.32) remained fairly constant. 
of constant orbital elements clearly does not apply over long periods, since 
all the elements a re  subjected to growing secular perturbations. For 
satellites with apogee height ha> lo4 km, these perturbations a re  mainly 
produced by the combined effects of a i r  drag, Earth's flattening, and 
lunisolar perturbations (for perigee heights h p > l O O O  km, the effect of a i r  
drag is mostly negligible). 
Earth satellites we are  therefore dealing with equations (16.4) which allow 
for the various factors mentioned above. 
solved by numerical integration. This technique, however, is practicable 
only for  comparatively short periods (no more than a few tens o r  at most 
hundreds of circuits). 
integration of long-range orbit evolution (e. g., in satellite lifetime 
determinations) a re  formidable. 
of e r r o r  build-up in lengthy numerical integration. 
in Sec. 15.8 is more suitable for these purposes. 
the long-periodic perturbations of the orbital elements q j  a re  essentially 
smooth functions, the finite increments of these elements during one circuit, 
6qj, can be replaced with the corresponding differentials dq,. We thus arr ive 

The assumption 

In the exact analysis of motion of artificial 

This set  of equations is generally 

The machine time requirements for numerical 

Moreover, there is always a danger 
The method proposed 

Since the secular and 

(16.72) 



where qj ( j =  1, 2 , .  . . , 5) is a set  of elements which specify the size, the 
shape, and the orientation of the orbit (e. g., the elements a, e, o, i, a) ,  
6qj;, dqjz, dqja, 6qj4 a re  the perturbations of orbital elements during one circuit 
produced by (1) a i r  drag, (2) Earth 's  flattening, (3) lunar and (4) solar 
perturbations; P is the orbital period of the satellite. 
is not required with any precision, the period P can be calculated from 
(5.36). If higher accuracy is required, the orbital period should be corrected 
for the various perturbing factors, a s  indicated in the preceding. The 
increments d q j t ,  8 q j 2 ,  6qj3, 8qj4 should be calculated from (13.32), (15.66), 
and (16.38). For satellites with distant apogees (of the order  of 5 -lo4- 
lo5 km and more), the lunar perturbations should preferably be allowed for 
with the aid of second-order equations 1191. 

If the effect of long-periodic lunisolar perturbations is negligible, 
relations (16.60) can be substituted for (16.38). 

Because of the complexity of the expressions in the right-hand sides 
of (16.72), whose numerical values depend on the mutual position of the 
Earth, the Moon, and the Sun, no analytical methods of solution a re  
available at present for this set  of equations. It is therefore solved by 
numerical integration. Each step in the integration scheme corresponds 
to one complete circuit of revolution, which ensures maximum saving in 
machine time in comparison with the straightforward solution of the set  
(16.4). The computer time can be additionally reduced by using finite- 
difference techniques 1291. Each step in the numerical solution then 
corresponds to quite a few circuits (the nupber  of circuits in each step 
is determined by the period during which the orbital elements may be 
assumed constant). 

The solution of equations (1 6.72) is essentially simplified if only one 
perturbing center need be considered. 
the motion of artificial Moon satellites, for which the Earth 's  pull is some 
178 times a s  great a s  the Sun's pull. 
three integrals, and their solution reduces to two quadratures. The 
dependence of the solution on the initial conditions of motion can be analyzed 
in great detail 119 .' 

In conclusion e note that, aside from the previouslymentioned perturbing 
factors influencing the motion of artificial Earth satellites, there a re  also 
other disturbing forces ( terrestr ia l  gravity anomalies, radiation pressure, 
electromagnetic forces, etc. ). However, for the great majority of satellites 
(with the exception of some peculiar satellites, e. g., of the Echo series), 
the effect of these forces is inferior in comparison with the contribution 
from the factors considered in the last chapters. 

If the function N ( t )  

In practice this is so when analyzing 

In this case, equations (16.72) have 

/ 
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Chapter 17 

THE EFFECT OF RADIATION PRESSURE ON 
MOTION OF ARTIFICIAL EARTH SATELLITES 

17.1. RADIATION PRESSURE 

Light (or other forms of radiant energy) impinging on a surface set up 
a so-called r a d i a t i o n  p r e s s u r e .  Surfaces reflecting or emitting 
radiation also experience this pressure. 
quantity, defined a s  the ratio of the force on a surface element to the area 
of that element. In general, the radiation pressure vector is written as  /lS/ 

Radiation pressure is a vector 

E q = t - T ,  (17.1) 

where I: is the flux intensity of radiant energy through unit a rea  of the 
surface element being considered, c the velocity of light, z a unit vector 
in the direction of incident (reflected or emitted) light; the sign+ implies 
incidence of radiation, while - reflection o r  emission. Since radiation 
pressure is produced by the incident and the reflected luminous fluxes, 
the magnitude of this pressure substantially depends on the mechanism 
of light reflection. We consider the following three limiting cases: 

(i) total absorption of incident light, 
(ii) perfect specular reflection, 

(iii) perfect diffuse reflection. 
If the incident flux is completely absorbed, there is no reflected radiation. 

Expression (17.1) is then written in the form 

S cos a q=- 
c 7* (17.2)  

where S is the intensity of the radiant energy flux through unit surface a rea  
at  right angles to the flux, cc the angle between the direction of the luminous 
flux and the normal to the surface. 

With perfect specular reflection, the intensity of the reflected flux is 
equal to the intensity of the incident flux, and its direction is specified 
by the equality of the angles of incidence and reflection. Hence it follows 
that the radiation pressure vectors q1 and q20f the incident and the reflected 
fluxes a re  equal in magnitude and are  symmetric about the normal to the 
surface (Figure 17.1). F rom (17.2) we see that the magnitudes of the 
vectors q, and q2 a re  

S cos a 
41 = 92 =e. 
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Hence the resultant pressure vector in the case of perfect specular 
reflection (Figure 17.1): 

(17.3) 25 cos2 a q=- e 

where n is the unit vector in the direction of the inner normal to the surface. 
In diffuse reflection, the radiation pressure 

determined by (17.2). 
a unit surface a rea  and assume Lambert-law scattering of energy 1161: 

of the incident flux is 
To find the pressure 42 of the reflected flux, we take  

dS =ncos ydbl, (17.4) 

where d0 is a solid angle element, y the angle between thc axis of the soli? 
angle and the normal to the surface, dS is the intensity of the reflected flux 
in the solid angle d 0 ,  x a constant. 

FIGURE 17.1. Specular reflection of a 
luminous flux by a surface element.  

n 

FIGURE 17.2. Diffuse reflection ot a 
luminous flux. 

Consider a solid angle between two coaxial infinitesimally close circular 
The angles cones, whose common axis is normal to the reflecting surface. 

between the generatrices of these cones and their axis a re  y and y+dy 
(Figure 17.2). Then 

dbl = 2n sin y dy 

and (17.4) takes the form 

dS = Znn sin y cos y dy. (17.5) 

On the other hand, the total intensity of the energy flux through unit 
surface element is S cos a. Hence, assuming perfect diffuse reflection, 
we find 
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Substituting it in (17.5), we find 

dS = 2s cos a sin y cos y dy. (17.6) 

From symmetry considerations i t  follows that the pressure components 
of the reflected flux tangent to  the reflecting surface mutually cancel. 
is only the normal component d q r .  

There 
From (17.1) and (17.6) we have 

n sin y cos2 y dy. 25 cos a 
dq2= 7 

Integrating, we find the total radiation pressure set up by the reflected flux: 

- 
(17.7) q 2 = ~ n R s s i n y c o s 2 y d y = - - 5 c n .  2s cos a 

2s cos a 

0 

Hence, making use of (17.2), we find the resultant radiation pressure 
in the case of perfect diffuse reflection: 

q=T S cos a (q++nf 
(17.8) 

If the actual reflection mechanism is a combination of specular and 
diffuse reflections, the expression for the radiation pressure takes the form 

(17.9) 

where ki and k2 are  the coefficients of specular and diffuse reflection, 
varying from 0 to 1. 

reflected light adds to the pressure of emitted radiant energy (mainly 
infrared heat radiation). 
like the pressure of reflected light. For  diffuse emission according to 
Lambert 's law (17.4), the radiation pressure is calculated from (17.7). 
If the space vehicle under consideration has no internal sources of energy, 
the emitted and the absorbed radiant fluxes a r e  of course equal in a state 
of thermal equilibrium. If we furthermore ignore the redistribution of 
energy in the spacecraft interior, i. e . ,  if each surface element is assumed 
to radiate the entire energy absorbed by it, we write 

As we have previously observed, the pressure set up by the incident and 

The pressure of the emitted radiation is determined 

k l+k2=1 .  (17.10) 

If energy transfer in the interior is not negligible, and if there a re  
also internal sources of energy, the pattern is considerably complicated. 

17.2. 
THE MOTION OF A SPHERICAL ARTIFICIAL EARTH SATELLITE 

THE EFFECT OF RADIATION PRESSURE ON 

The Sun is obviously the main source of radiant energy for  space vehicles 
inside the solar  system. If absorption of radiant energy in the interplanetary 
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space is neglected, the flux intensity per unit surface can be written a s  

(17.11) 

where r is the distance of the vehicle from the Sun, r, the mean radius of 
the Earth 's  orbit, So the flux intensity of solar radiation at the distance of 
the Earth 's  orbit, whose numerical value is 1241 

so= 1.94 cal/cm2. min= 1.35.106 erg/cm2- sec. 

Applying (17.2) and taking a=O for the angle of incidence, we find the 
solar radiation pressure in the case of total absorption: 

(17.12) 

where 90 is the radiation pressure at the distance of the Earth 's  orbit, 
given by 

(17.13) q o = a = 4 . 5 .  S kg/m2. 

At present, of greatest applied significance is the analysis of solar 
radiation pressure on light-weight inflatable balloon satellites of the Echo 
type. We shall therefore confine the discussion to satellites of spherical 
geometry. 

From (17.2) and (17.12) it follows that for total absorption, the perturbing 
acceleration f produced by the radiation pressure points along the luminous 
flux. Its magnitude is given by 

(17.14) 

where R s  is the radius of the satellite, m its mass,  do the area of a surface 
element, dd=cosado  the a rea  of the element's projection on a plane normal 
to the luminous flux; the integral is taken over the entire illuminated surface 
of the satellite. 

From symmetry considerations it follows that in specular and diffuse 
reflection, the total perturbing acceleration on a spherical satellite is also 

I 

FIGURE 17.3. Distribution of luminous 
flux incident on a spherical satellite. 
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along the luminous flux. Making use of (17.3) and (17.12), we  find that for  
perfect specular re 

The element do is a ring of radius p and width dp. From Figure 17.3 
we see that the above expression for f takes the form 

(17.15) 

ression coincides with (1'7.14), which has  been derived for  the 

(17.2), (17,8), and (17.14) it follows that for  perfect diffuse 
total absorption of radiant energy. 

reflection, the perturbing acceleration i s  

Referring to  Figure 17.3, we see that 

where 

y = R :  -p*. 

Substituting in (17.16), we find 

4 nRa nR: 
f = 1 - 9 + q, w 1 . 4 4 7  91. 

(17.16) 

(17.17) 

Comparing relations (17.9), (17.14), (17.15), and (17.17) we  see that 
in the general case of a spherical satellite without internal sources of 
energy, the perturbing acceleration is given by 

(17.18) 

where k is a coefficient depending on the mechanism of light reflection, and 
also on the distribution of thermal emission over the satellite surface (the 
latter factor is largely determined by heat transfer processes in the satellite). 

k =  1 corresponds to a case of perfect specular reflection, and also to 
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orbit, the numerical value of the coefficient can be refined by means of 
theoretical calculations based on trajectory measurements. 

Applying (17.12), we write (17.18) a s  

(17.19) 

where the coefficient A is the ratio of the satellite mean cross  section F to 
its mass  m. This expression is valid for  satellites of arbi t rary geometry. 
In some cases, F should be interpreted a s  some characteristic a rea  of the 
satellite (e. g., for solar-oriented satellites this is the a rea  of the c ross  
section normal to the luminous flux, for  nonoriented convex satellite it is 
one quarter of the total surface area, etc.). 
fairly arbitrary, since the coefficient k can always be adjusted to offset any 
discrepancy. This coefficient should be calculated taking into consideration 
the conditions of absorption, reflection, and emission of radiant energy 
by the satellite, which is achieved by integrating equalities (17.2), (17.3), 
(17.7), and (17.8) for solar radiation pressure on a single surface element. 
The resultant radiation pressure, however, may prove to make a certain 
angle with the Sun -satellite direction. 

In general, the choice of F is 

17.3. 
PRESSURE AND OTHER PERTURBING FACTORS 

RELATIVE MAGNITUDE OF SOLAR RADIATION 

We now calculate the ratio of the perturbing accelerations set up by 
solar radiation pressure ( J )  and by a i r  drag ( T )  for  a spherical satellite 
in circular orbit, 
r=ro ,  w e  write . 

Making use of (14.29), (14.31), and (17.19), and putting 

(17.20) 

We see that this ratio is inversely proportional to a i r  density p ,  and it 
therefore increases with flight altitude h .  

TABLE 17.1 

r Table 17.1 lists the values of a s  a function of the circular orbit 

height h; 
of Appen 
17,13)). 

were calculated from (17.20) for the atmosphere 
ng ~ ~ ~ 2 . 4 ,  k=1.44, and qo=4.5-10-'kg/rn2 (see 
that table that for  flight heights h< 500 km, the 
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magnitude of solar radiation pressure is much less  than the magnitude of 
a i r  resistance. At these altitudes, radiation pressure is in fact less  than 
the unaccountable fluctuations in a i r  drag. Therefore, for hC 500 km, the 
effects of solar radiation pressure a re  commonly ignored. For h> 500 km, 
the radiation pressure is comparable in magnitude with the drag forces, 
and for h> 700 km it is even greater than the air drag (for the particular 
atmosphere being considered). 

with the perturbing acceleration fa of the solar attfaction, we make use of 
relations (1 6.2 1) and ( 17.19). 

To compare the perturbing acceleration f due to solar radiation pressure 

Putting 

we find 

(17.21) 

Ir where g, =A is the Sun's gravitational acceleration at the distance of the 

Earth 's  orbit, rn the satellite's distance from the Earth 's  center. 
Making use of (1.3) and (16.51), we find g o ~ 6 ~ 1 0 ' 3 m / s e c 2 .  If the size 

and the weight of the satellite may vary between the limits indicated in 
Sec. 14.4, we find that A in this case varies from 0.003 to 0.3m3/kg.sec2. 
As  we have shown in the previous chapter, solar attraction has a substantial 
influence on satellites flying at heights h>104km above the Earth 's  surface. 
Thus, r0=17 .103km. Substituting these numerical values in (17.21) and 
applying (16.51) and (17.13), we find that under our assumptions, the ratio 
f / f a  varies from 0.002 (large heavy satellites) to 0.2 (small light-weight 
satellites). 

only for small  light-weight satellites orbiting at h> 500 km. 
satellites, the perturbations produced by radiation pressure a r e  small  in 
comparison with the disturbing effects due to the other factors. 
classes of artificial Earth satellites, however, may provide an exception 
to this rule. Among these exceptions we have 

West Ford project), 

& 

It follow$ from the preceding that solar radiation pressure is noticeable 
For all other 

Special 

(i) very small  satellites (e. g., reflecting dipoles used in the 

(ii) light-weight inflatable balloons (Echo-series satellites). 
The perturbations set  up by solar radiation pressure may be quite 

substantial for  these special satellites. For Echo I, which was a sphere 
nRi 

30.5m in diameter weighing 70.4 kg, A=?= 100 m3/kg .set 1 2 3 1 ,  which 

is some 300 times a s  large as the above maximum value of this coefficient 
for ordinary satellites (it follows from (17.19) that the magnitude of the 
perturbing acceleration produced by radiation pressure is proportional to A ) .  
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17.4. 
ON THE SATELLITE'S ORBITAL AXES 

PROJECTIONS OF THE PERTURBING ACCELERATION 

In estimating the effect of solar radiation pressure on the motion of 
artificial Earth satellites, we shall proceed from the following assumptions. 

(1) The resultant perturbing acceleration produced by radiation pressure 
points along the Sun - satellite central line. As  we have previously shown, 
this is so for spherical satellites. 
all satellites which a r e  symmetric about the Sun-satellite central line, 
and also for satellites of arbitrary geometry if  the absorption of radiant 
energy is total, i. e . ,  there is no reflection or  emission of energy. 

in comparison to i ts  distance from the Sun, the perturbing acceleration can 
in fact be determined for a satellite hypothetically located at the Earth's 
center. 

(3 )  The Sun travels around the Earth in a circular orbit of radius ro. 
Under these simplifying assumptions, making use of (17.19), we find an 

The proposition obviously applies for 

(2 )  Since the distance of the satellite from the Earth's center is small 

expression for the perturbing acceleration vector 

4 s  - Qe, (17.22) 

where 
given by 

is the unit vector along the Earth-Sun line, and Q a coefficient 

(17.23) 

The last of these equalities applies for spherical satellites only. 

acceleration on the satellite's orbital axes (see Figure 2.1 o r  Figure 16.2). 
We make use of equalities (16.23) and note that 

From (17.22), we can easily find the projections S ,  T, W of the perturbing 

(17.24) 

where 1, j ,  k a r e  the unit vectors along the Ogqc axes depicted in Figure 5.5 
o r  Figure 16.2, and n,, %, xJ a re  the direction cosines of the Earth-Sun 
line in this frame. Thus, 

S = - Qc e So = - Q (nl cos 6. f x2 sin e)= 

T = - Q< - To = Q (nl sin 6 - n2 cos 6) = 

W= - Qe. WO= - Qn,= Q sin y, 

- _  -- Q COS y COS (6 - a), 

= Q cosy sin (6 -u), 
(17.25) 

where So, TO, WO a re  the unit vectors along S,T andW;eis the true anomalyof 
the satellite, u and y a re  the angles which a r e  determined from equality 
(16.24) or from Figure 16.2. 
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17.5. PERTURBATION OF CIRCULAR 
ORBIT DURING ONE REVOLUTION 

In determining the perturbations of circular orbit per revolution, we 
make use of the fact that the satellite's orbital period is much less  than 
a year, so that the displacement of the Sun relative to the Earth can be 
ignored during this period, i. e., the direction cosines xi. XZ, xs remaip 
constant. Our problem thus reduces to a particular case of the classical 
three-body problem, where a point moves in the field of attraction of two 
stationary centers (with repulsion substituted for  the attraction of one of 
the centers). It is, however, hardly advisable to apply the complicated 
methods which a re  available for  the solution of the general problem 131,  
since our approach is fairly crude. We shall therefore seek an approximate 
solution by linearizing the effect of small  perturbing accelerations. 

Let the axis Og(Figure 16.2) point to some initial position DO, and let 9 be 
the angular distance between the initial and the current positions in circular 
orbit. Then in (17.25) the true anomaly 6 is replaced with 'p, and the 
expressions take the form 

n S"=O, S , = Q C O S Y t  Q s , = a + ~ t  

To = 0, T ,  = Q COS y, 9, ==a, 

W,=--Qsinv, W,=O, 

! S=Qcosysin(q-a-? 2 ) '  

T =  Q cosy sip (9--a), W =  - Q sin y. 
(17.2 6) 

(17.27) 

For simplicity, let us consider the case of a satellite which is constantly 
illuminated by the Sun - this satellite is never eclipsed by the Earth. It 
follows from (17.26) and (17.27) that the satellite experiences a constant 
perturbing acceleration at right angles to the orbital plane and an in-plane 
periodic acceleration, whose frequency is equal to the satellite's orbital 
frequency. As we have shown in Secs. 3.3 and 3.4, these accelerations 
a re  incapable of producing secular perturbations of the orbital plane, 
while in-plane secular perturbations reduce to a change in the orbital 
period and to a growing distortion of the orbit shape. A circular orbit 
i s  transformed into a nearly circular one with an increasing eccentricity 
and a constant mean radius. 

The rate of distortion of the orbit can be described in terms of the 
change 6r  in the distance of the satellite from the Earth 's  center (or in 
flight altitude) during one cir.cuit of revolution. Consider a point D of the 
orbit, located at an angular distance 
increment 6r  at this point can be determined from 

from the point of origin Do. The 

b (9) = Ar ((P -I- 24 - br (91, O7.28) 

where Ar(9)  and Ar(9+2n)  are the radial pertu 
passages of the satellite through the point I). Applying (3.22) to calculate 

ns for two successive 
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where rm is the mean radius of the orbit. 
for 9, qS,. TI ,  and (Pr,, we find 

Substituting expressions (17.27) 

br (9) =- 3n- & Q COS ysin ('p - a). (17.29) 
P 

Orbit perturbations 

In orbital period AP, sec 
Radial (in flight altitude) 

per circuit &rmax, m 

The maximum change in flight altitude obtains at points with cp=a k n / 2 ,  
i. e., a t  points which a re  located on the normal to the projection of the 
Earth-Sun line onto the orbital plane. 
circuit is 

The magnitude of this change per  

Characteristic area-to-satellite mass ratio A ,  
m3/kg .secg 

100 0.3 0.003 

0.16 5.10-' 5 .lo-' 

600 2 0.02 

bf,,,,, = 3n ?m Q cos y. (17 .30 )  

With constant rm and Q, the maximum perturbation is observed for  y = 0, 
i. e . ,  when the Earth-Sun line is in the orbital plane, 

along the orbit, a s  we l l  a s  perturbations in orbital velocities, 
of (3 .32)  and (17.27),  we obtain the following expression for the relative 
perturbation of the orbital period: 

This technique can also be applied to determine the growing perturbations 
Making use 

-=-cost+cosa, AP 3Q gm=-$. 
P gm 'm 

(17.31)  

As an example, consider a satellite which moves in circular orbit at a 
height h =  lOOOkm with y = a = O .  We shall determine the corresponding 

€irmax and AP for various values of the coefficient A=t i ; .  Making use of 

equalities (17.13),  (17.23),  (17.30),  and (17,31) ,  we put k =  1 .44 .  
results a r e  listed in  Table 17.2.  

F 

The 

We see  from the table that for ordinary satellites, whose A is between 
0.003 and 0.3 m3/kg -sec2, the perturbations produced by solar  radiation 
pressure a re  small  and mostly negligible. However, for  large light-weight 
satellites of the Echo I type, having A = 100 m3/kg .sec2 (and also for very 
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small satellites), solar  radiation pressure may cause substantial 
perturbations which must not be neglected. 

The preceding analysis of circular orbit perturbations is for a non- 
eclipsing satellite which is constantly illuminated by the Sun. 
is considerably complicated if  the sunlight is screened by the Earth over 
part of the satellite orbit. 
obtained for determining, to first approximation, the resulting perturbations 
in orbital elements. To this end it suffices to integrate the right-hand 
sides of (3.6). 
of the orbit, the perturbing accelerations S ,  T, and W should be calculated 
from (17.26), with J, substituted for  cp. Over the eclipsed section, 

The problem 

Suitable expressions can nevertheless be 

For the angles J, corresponding to the illuminated section 

17.6. PERTURBATION OF ELLIPTICAL 
ORBIT DURING ONE REVOLUTION 

In determining the perturbations of elliptical orbit during one circuit 
of revolution, we  shall proceed from the simplifying assumptions of the 
previous section. Substituting (17.25) in the right-hand sides of (11.39) 
and (16.32), we make use of (4.19) and the relation 

\ 

2n 

f F (cos 6) sin' 6 d6 = 0, 
0 

where F(cos 6) is some function of cos %, and 1 is an arbitrary odd number. 
The result is the following expressions for elliptical orbit perturbations 
during one revolution of the satellite: 

2n 

h=--- 'rl Qp2 x 2 j  (e*+ F ) d 6 ,  
l -eZ p 4 2  

2n 

QP? de=--x2 -+- 8s ) d e .  cos2 6+ e cos 6 

* b  

2n 

(17.32) 

where A = 1 + e  cos 6. 

and expressing cos6 in te rms  of A, we reduce the problem to integrals 
of the form 

Substituting 1 -cos26 for  sin26 in the right-hand sides of these relations 

2n 
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From the previous evaluations of these integrals, (16.35) and (16 .37) ,  
we obtain the final expressions for the perturbations of elliptical orbit 
per circuit: 

6a e= 0, 

6e = - 3nQx2 v m ,  
6S,?=3nQna--- 

61 = 3nQn3 - cas o 8 

bw =r3nQx, $ - cosi6Q.  

P 
a2 slnc e 
p sint ' 
as 
P y-i=T' 

(17.33)  

The perturbation of elliptical orbit thus changes the eccentricity, rotates 
the semimajor axis, and alters the orientation of the orbital plane (there 
is also a certain deviation of the sidereal period from the osculating period). 
The length of the semimajor axis a remains unaffected. As we have shown 
in Sec. 16.8, this is a consequence of our  assumption that the Earth-Sun 
direction is fixed in space and that the orbital elements used in the 
calculation of the right-hand sides in (17.32)  a re  constant, The proof 
offered in Sec. 16.8 for the constancy of the projection of the satellite's 
angular momentum vector about the Earth 's  center on the Earth-Sun 
direction also remains in force. The perturbations 6e, Sa, and 6i therefore 
satisfy identity (16 .43) ,  which can be verified by direct substitution. 

written a s  
Note that expressions (17.33) for the perturbations Sa and 6i can be 

( 1 7 .34) 

Comparing these expressions with (9 .35) ,  we see that during one circuit 
of revolution the orbital plane is rotated around the semimajor axis through 
an angle 6@, defined by (17.34) .  

maximum rotation angle 6y,  with constant Q, a ,  and e,  is attained for Y=Y, 

i. e., when the orbital plane of the satellite is perpendicular to the Earth - 
Sun direction. 

As an example, let u s  consider the American satellite Echo I, which 
was launched into orbit with perigee and apogee heights hp= 1500 km and 
h a =  1700km, having A=100ms/kg.sec2. 
in (17.23) k= 1.44,  we obtain the maximum rotation angle 6$ for  this satellite 
(with XJ= 1): 

Since according to (16.24) x3 = = s h y ,  the 
n 

Making use of (17.13)  and putting 

6lp = cr'.3. 

This angle is small in comparison with the orbit plane rotation produced 
by the Earth's flattening (for Echo I the orbital plane might have been 
rotated by a s  much a s  10' pes circuit). 
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It can be proved that for e - 0 ,  the foregoing orbit perturbations approach 
a s  a limit the circular orbit perturbations derived in the previous section. 
Indeed, from (17.34) we have 8$-0 for e-0. This corresponds to the 
circular orbit plane remaining unperturbed. 

(4.19) we have 
Let us now consider the perturbations of r in elliptical orbit. From 

e sin 0 60 -cos 666 6P 6r = ~ 1+ecostt  + ( l + e c o s e ) *  * 
(17.35) 

Let the angular distance of the given point from the node be constant. 
Then, seeing that p = a ( l  -e2) and 6=u- io0 ,  we write 

bp=&z(l -ez)-2ue&, 6d=--do. 

These equalities, together with relations (17.33), a re  substituted in (17.35). 
Now, applying (16.24) and seeing that limu=lirnp=r,, we write 

c+o e+o 

4n limbr = -3nQ 7- cosy sin (6 - a). 
C+O 

The right-hand side of this equality coincides with the corresponding 
expression in (17.29) for perturbation of circular orbit, with 6 substituted 
for  cp (which is fully admissible, since the choice of initial position in orbit 
is quite arbitrary). 

The above expressions for orbit perturbations correspond to the case 
of a noneclipsing satellite which is continuously illuminated by the Sun. 
The formulas for satellites which a re  eclipsed by the Earth a re  much 
more complicated 123, 341. In the general case, the previously considered 
perturbations of orbital elements a re  supplemented by a perturbation of the 
semimajor axis. To derive the corresponding expressions, we should 
make use of (11.39) and (16.32). inserting expressions (17.25) for the 
components of the perturbing acceleration (along the illuminated sections 
of the orbit). Making use of (16.34), we reduce the problem to integrals 
of the form 

where n is an integer. 

from Sec. 16.7, while in integrals of the second kind we  employ the 
substitution 

Integrals of the first kind a r e  evaluated using the recursion formula 

dA 1 +e cos 6 =A, sin d d6 = - p. 

17.7. LONG-RANGE PERTURBATIONS 

In calculating orbit perturbations over considerable stretches of time, 
the Earth-% direction must not be assumed as fixed in space. If the 
assumption of constant orbital elements is retained in the evaluation of 
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the right-hand sides of (11.39) and (16.32). the problem can be solved 
by the method described in Sec. 16.9. The parameters xi ( i =  1, 2, 3) 
entering the right-hand sides of (17.33) a re  correspondingly replaced with 

(17.36) 

where P is the satellite's orbital period. 

for the coefficients 2, and, substituting these expressions for xi  in the 
right-hand sides of (17.33), we write relations for long-range orbit 
perturbations. These are in fact long-periodic perturbations with a 
period of one year.  We shall not discuss these relations in any detail, 
since in practice the problem is considerably complicated by the screening 
of sunlight by the Earth, and also by the superposition of other perturbing 
factors which have been considered in the preceding. 

The derivation of finite formulas for long-range perturbations in the 
case of eclipsing satellites is a highly arduous task. The exact immersion 
and emersion t imes in and from the Earth's shadow cannot be found in 
finite form: they a r e  calculated from some transcendental equation (see 
next section). 

The problem of the combined influence of the Earth's flattening and of 
solar  radiation pressure (neglecting the eclipses), however, can be reduced 
to finite expressions 1231. These expressions were derived for cases 
when the perturbation of the orbital plane due to solar radiation pressure 
was small  in comparison with the perturbation due to the Earth's flattening. 
This and other assumptions introduced in the derivation of the finite 
formulas (mainly the omission of air drag and of lunisolar attraction) 
a re  justified for satellites orbiting at heights of some 103-104km. At 
these altitudes, however, the sunlight is commonly screened over the 
greater portion of the orbit, and this substantially reduces the region of 
applicability of the finite relations. 

In practice, long-range perturbations due to the combined effect of 
solar  radiation pressure and other disturbing factors can be determined 
by numerical integration of equations (1 6.72). Terms allowing for the 
perturbation due to solar radiation pressure during one circuit (with 
sunlight screened off by the Earth) must be introduced in the right-hand 
sides of these expressions. 

If the orbit  of the space vehicle is determined by numerical integration 
of equations (1 6.4) and solar  radiation pressure points along the Sun-vehicle 
central line, the contribution from this pressure can be easily found. 
Seeing that in  this case the gravitational acceleration of the Sun and the 
acceleration se t  up by the radiation pressure a re  colinear, we make use of 
relation (17.19) to introduce in the right-hand side of (16.4) the following 
combined expression for  the effect of the two factors: 

Hence, making use of (16.52) and (16.53), we can obtain expressions 

(17.37) 

where r, and r a r e  vectors which define the position of the Sun and of the 
space vehicle relative to the Earth, and fo is the acceleration produced by 
the combined action of solar radiation pressure and solar gravitational pull 
(in a nonrotating frame with its origin at the Earth's center). 
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17.8. IMMERSION AND EMERSION TIMES 
OF A SATELLITE 

As we have previously observed, the perturbations produced by solar 
radiation pressure cannot be calculated unless the time of satellite 
immersion in the Earth's shadow and the time of its emersion from the 
shadow cone a r e  known. 
solution, since the effect of solar radiation pressure on the majority of 
artificial Earth satellites is slight and since the coefficient k in (17.19) 
and (17.23) is known with low accuracy. We therefore assume that the 
Earth is a sphere of radius R ,  and also neglect the tapering of the Earth 's  
shadow due to atmospheric refraction and the finite size of the Sun. 
Earth 's  shadow is thus a circular cylinder of radius R.  whose axis is 
parallel to the Sun-Earth direction. The problem reduces to the 
determination of the crossing times of this cylinder by the satellite. 
2 be the angle between the Earth-satellite line and the line through the 
centers of the Earth and the Sun (i. e., the zenith distance of the Sun as  
viewed from the satellite); e is the angle between the Earth-satellite 
line and the tangent to the E a r t h s  surface drawn from the satellite, Under 
our simplifying assumptions, the satellite crosses the Earth 's  shadow when 

This problem lends itself to an approximate 

The 

Let 

z=e; (17.38) 

for  z>e the satellite is immersed in the shadow, and for z<e the satellite 
is insolated. 

elementary geometric considerations: 
The angle e is calculated from a formula, which is obvious from 

where r is the distance of the satellite from the Earth 's  center. 

(17.39) 

FIGURE 17.4. Determining the zenith distance 
of the Sun. 

To find the angle z, we examine Figure 17.4, which shows a sphere 
centered at the Earth's center 0; the point N is the 
sphere, and the points Di and 0, a r e  the intersectio 
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the lines from the Earth 's  center to the satellite and to the Sun. 
the spherical triangle DiNOi, where 

Consider 

here  6 and a are  the declination and the right ascension of the satellite, 
6, and CY, ditto for the Sun. From these equalities we have 

cas z = sin 6 sin bo + cos b cos bo cos (a, - u). (17.40) 

Substituting (17.39) and (17.40) in (17.38), we obtain the shadow equation, 
which is in fact the condition of satellite immersion (or emersion): 

sinbsin&,+ cos6cos6, cos(a,-u>=- fq, (17.41) 

where bo and a,  a re  provided by astronomical measurements, and 6 and a 
are determined from (1.12). 

revolution the shadow equation may have two solutions, one solution, or 
no solutions at all. The first of the three cases corresponds to an orbit 
where the satellite is eclipsed for some time, and the third case represents 
continuous insolation. 

a, is ignored, the shadow equation can be solved in finite form. 
be the point where the satellite's orbital plane meets the great circle 
through the point Oi, at right angles to the orbital plane. For given 
coordinates of the Sun ao, 6,. and for given orbital elements Q ,  i, the 
position of the point Do is determined by elementary for-mulas f e m  spherical 
trigonometry, which a re  used in calculating the a rc s  OiDo and QDo. Now, 
from the spherical right triangle DiOIDo and from equality (17.39) we see that 
the shadow equation can be written a s  

From geometrical considerations it follows that for  each circuit of 

For a satellite in circular orbit, when the change per  circuit in 60 and 
Let Do 

(17.42) 

W 
The a r c  DiDo can be calculated from this equality, and the angular 

distances of the points D,and D2, where the satellite meets the shadow 
envelope, from the node a r e  given by 

(17.43) 

In elliptical orbit, r is variable, and equation (17.42) should be solved 
separately by the method of successive approximations. 
a certain danger in adopting this course, a s  the method may lead to a false 
conclusion that the equation is unsolvable ( i f  a t  any step too large a value 
is inserted for r in the right-hand side of the equation). A more reliable 
method for  elliptical orbits calls for a graphical solution of the shadow 
equation or for  a successive substitution-and-verification procedure for  a 
sequence of orbit points (this, of course, cannot be carried out unless an 
electronic computer is available). 

There i s ,  however, 
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A P P E N D I X  1 

TABLE OF THE BASIC PARAMETERS OF THE COSPAR REFERENCE 
ATMOSPHERE FOR 1961 (CIRA 1961) 

Height 
h 

km 

0 
10 
20 
30 
40 
50 
60 
70 
80 
90 

100 
110 
120 
130 
140 
150 
160 
170 
180 
190 
200 
210 
220 
230 
240 
250 
260 
270 
280 
290 
300 
310 
320 
330 
340 
350 
360 
370 

Density 
P 

g/m3 

i .23.10-~ 
4.19. io-' 
8.89.10-~ 
1.84.10-6" 

1.02. lQ-: 

8.84. 
1.94. IO-* 
3.19. lo-:,, 

4.07 * 10- 

3.04. 10- 

4.78 * 10- 
9.49 * lo-" 
2.44.10- ' I  
6.95. lo-'' 
3.07. lo-" 
1.69. lo-'' 
1 11. lo-;; 
8.26. IO- 
6.59. 

3.61 . 
4.73 * 10-I3 

2.77 . IO- I 3  
2.14.10-'~ 
i .67.10- '~ 
1.30. lo-:: 
1.03 . 10- 
8.11. io-" 
6.45 . 10- 
5.15. io-" 
4 14.10-I~ 
3.34 10- l 4  

2.21.10-l4 
1.81.10-'~ 
1.49.10-'~ 
i .23.10- '~ 
1.02. io-" 
8.55.10-'~ 

2.71 a 

Pressure 
P 

dyne/crn2 

1.02 * IO' 
2.68 * 105 
5.54.104 
1.21.104 
2.90.103 
7.91 * 10' 
2.25 * 10' 
5.51 10' 
1.03 10' 
1.62 
2.92. IO-' 
7.28. lo-' 
2.44 - lo-' 
1.16. IO-: 

5 08. IO-: 
7.22 * 10- 

3.81 . 10- 
2.92.10-~ 
2.25.10-~ 
1.75.10-~ 
1.36. 

6.74. io-' 
5.40. 
4.34 * lo-: 

2.86. io-' 
2.34. io-' 
1.92.  IO-^ 

1.10. IO-' 
9.25.10-~ 
7.79.10-~ 
6.59.10-~ 

4.78. 

1.07. lo-: 
8.48 10- 

3.51 * IO- 

1.59. IO-: 
1.32. IO- 

5.60. lo-' 

emperatur 
T 

O K  

289.25 
222.36 
217.07 
228 28 
247.86 
269.56 
257.82 
217.04 
184.60 
181 14 
212.10 
265.02 
342.96 
569.44 
799.13 

1014.53 
1 155.26 
1176.53 
1193.17 
1210.51 
1226.77 
1243.27 
1259.05 
1273.57 
1287.72 
1301 45 
1314 20 
1325.88 
1338.01 
1347.8 1 
1358.51 
1367.80 
1376.74 
1385.24 
1392.61 
1401.28 
1409.97 
14 15.9 1 

Molecular 
weight M 

g / m d  

28.97 
28.97 
28.97 
28.97 
28.97 
28.97 
28.97 
28.97 
28 97 
28.97 
28 85 
28.72 
28.60 
28.43 
28.25 
28.09 
27.90 
27.70 
27.47 
27.25 
27.00 
26.75 
26.48 
26.18 
25.87 
25 55 
25 21 
24.85 
24.50 
24.1 1 
23.74 
23.35 
22.96 
22.57 
22.17 
21.80 
21.44 
21.05 ' 
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APPENDIX 1 (cow. ) 

Height 

km 

380 
390 
400 
410 
420 
430 
440 
450 
460 
470 
480 
490 
500 
510 
520 
530 
540 
550 
560 
570 
580 
590 
600 
610 
620 
630 
640 
650 
660 
670 
680 
690 
700 
710 
720 
730 
740 
750 
760 
770 
780 
790 
800 

h 
Density 

P 

g/mS 

7.16.10-l5 

5 . 0 9 . 1 0 - ~ ~  
6.03. 10- l5 

4.32 - 10- l 5  
3.68. lo-'' 
3.15. 
2.70 10: i: 
2.33 * 10 
2.01 . 10-l5 
1.75.10-'~ 
1.52.10- '~ 
1.33. 10-l5 
1.17.10-'~ 
1.02.10-l5 
8.92 * lo-'' 
7.88. IO-'' 
6.94 lo-'' 
6-15 10- :: 
5.45 * 10- 
4.85. IO-'' 

3.87. lo-'' 
4.32 - lo-'' 

3.45 10:'' 
3.09 * 10- ;; 
2.22 ' 1o-IE 
2.00. lo-'' 

2.76 * 10 
2.47 * lo-'' 

1.80 lo-'' 
1.62 lo-'' 
1.45. lo-'' 
1.32. lo-;: 
1.19. 10- 
1.07 * IO-'' 
9.70. lo-'? 
8.77 . io- 
7.95.10-'~ 
7.22. 10-I? 

5.49.10-l~ 
5.02. 1 0 - l ~  
4.60.10- I 7  

6.59. 
6.00 * 

Pressure 
P 

dyne/cm2 

4.10 lo-' 

3.04. 10-i 

2.29. IO-' 

3.52. 10z5 

2.00.10-~ 
1.74. 
1.53. 
1.34.10-~ 

2.63 10 

1.18. 
1.05. 

8.20. IO- 
7.28. lo-' 
6.48 + IO-' 
5.78. lo-' 
5.16. lo-' 
4.62. lo-' 
4.14. lo-' 

9.20 * lo-: 

3.71. lo-' 
3.34 f lo-' 
3.00. lo-' 
2.70. lo-' 
2.43 lo-' 
2.19. lo-' 
1.98. IO-' 
1.79. lo-' 
l.G2. lo-' 
1.47. lo-' 
1.33. lo-' 

1-10 

8.29 * 10- 

1.21. lo-' 

1.00. lo-' 

7.56.10-~ 

5.77. io-' 
5.28. IO-' 
4 8 3 . 1 0 - ~  

9.10 * lo-; 

6.90. IO-: 
6.31 * 10- 

4.42. lo-: 
4.05 * 10- 

zmpera turc 
T 

O K  

1423.66 

1436.16 
1444.26 
1451.09 
1456.45 
1461.72 
1465.97 
1469.84 
1471.54 
1474.15 
1474.15 
1474.1 5 
1474.15 
1474.1 5 
1474.15 
1474.15 
1474.15 
1474.15 
1474.1 5 
1474.15 
1474.1 5 
1474.15 
1474.15 
1474.15 
1474.15 
1474.1 5 
1474.15 
1474.15 
1474.15 
1474.1 5 
1474.15 
1474.15 
1474.1 5 
1474.15 
1474.15 
1474.15 
1474.15 
1474.15 
1474.15 
1474.15 
1474.15 
1474.15 

i43a46 

vlolecular 
eight M 

g/mol 

20.70 
20.35 
20.00 
19.70 
19.40 
19.10 
18.82 
18.55 
18.30 
18.05 
1784 
17.68 
17.48 
17.18 
16.87 
16.64 . 
16.46 
16.31 
16.13 
16.00 
15.88 
15.79 
15.70 
15.56 
15.42 
1527 
15.16 
15.10 
14.97 
14.86 
14.74 
14.70 
14.62 
14.42 
14.34 
14.22 
14.12 
14.02 
13.99 
13.93 
13.92 
13.92 
13.88 
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APPENDIX 2 

TABLE OF THE FUNCTIONS H (h), F(h),  
AND CP ( A )  FOR CIRA 1961 

(h). k (h),  

- 
Height 
h ,  km 

- 
100 
110 
120 
130 
140 
150 
160 
1 70 
180 
190 
200 
210 
220 
230 
240 
250 
260 
270 
280 
290 
300 
310 
320 
330 
340 
350 
360 
370 
380 
390 
400 
410 
420 
430 

Scale 
height 
H, km 

5.5 
6.5 
7.5 
9 5  

13 
19 
28 
31 
33 
35 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
51 
52 
53 
54 
56 
57 
58 
60 
61 
62 
64 

-- 
F 

m3 
g .sec2 

s. c - 

1.3. lo-; 
8.4. 10- 

1.36 - 10- 
3.83. lo-: 
8.94 * 10- 

0.0171 
0.0289 
0.0441 
0.0642 
0.0912 
0.127 
0.172 
0.231 
0.306 
0.402 
0.523 
0.676 
0,868 
1.11 
1.40 
1.77 
2.22 
2.77 
3.44 
4.26 
5.23 
6.41 
7.81 
9.48 

11.5 
13.8 
16.5 
19.7 

3.30. lo-: 

Auxiliary functions 

cp 

m3 s.d 
3% 

i . i 8 .10 -~  
4.57. lo-: 

3.63. io-' 
6.59. io-' 
1-00 * lo-; 

i .69.10-~ 
2.35.10-~ 
3.07.10-~ 
4 m . 1 0 - ~  
5.18. 1 0 - ~  
6.63.10-~ 
8.51. io-' 

2.3. lo-* 

1.60. 10- 

1.35 * 10- 

0.0107 
0.0136 
0.0171 
0.02 14 
0.0266 
0.0330 
0.0406 
0.0497 
0.0607 
0.0736 
0.0892 
0.107 
0.128 
0.153 
0.181 
0.215 
0.253 
0.297 
0.346 

- 
k .1OJ 

- 

1.30 
1.64 
1.67 
1.96 
2.43 
3.12 
3.93 
4.93 
5.99 
6.26 
6.78 
7.21 
7.57 
7.92 
8.16 
8.49 
8,69 
893 
9.14 
9.37 
9.58 
880 

10.0 
10.2 
10.4 
10.6 
10.9 
11.1 
11.4 
11.6 
11.8 
12.1 
12.3 
12.6 

Qp 

m3 
:g -5ec2 s. d. - 

1.30 
6.03 

21.9 
68.4 

128 
197 
251 
318 
387 
525 
674 
869 

1110 
1410 
1790 
2240 
2810 
3500 
4340 
5350 
6570 
8020 
9750 

1.69 * 10' 

1.17.104 
1.41.104 

2.02.104 
2.37.104 
2.81 .io4 
3.32.104 
3.89.104 
4.53.104 
5.26.104 
6.08.104 
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APPENDIX 2 (eont.) 
- 

Heighl 
h ,  krr 

440 
450 
460 
470 
480 
490 
500 
510 
520 
530 
540 
550 
560 
570 
580 
590 
600 
610 
620 
630 
640 
650 
660 
670 
680 
690 
700 
710 
720 
730 
740 
750 
760 
770 
780 
790 
800 

Scale 
height 
H, km 

66 
67 
69 
71 
72 
73 
75 
76 
77 
79 
80 
82 
84 
86 
87 
89 
90 
91 
92 
92 
93 
94 
94 
95 
96 
96 
97 
98 
99 

101 
103 
105 
107 
109 
111 
113 
115 

Auxiliary functions 

P 

- s. c 
ms 
g *sec2 

23.5 
27.8 
32.9 
38.7 
453 
52.9 
61.7 
71.6 
83.0 
95.9 

111 
127 
146 
167 
190 
217 
246 
279 
316 
357 
403 
454 
51 1 
574 
643 
721 
806 
901 

1006 
1122 
1250 
1390 
1545 
1714 
1900 
2102 
2323 

0.404 
0.467 
0.541 
0.621: 
0.715 
0.816 
0.927 
1.06 
1.21 
1.37 
1.56 
1.76 
1.98 
2.23 
2.50 
2.78 
3.12 
3.18 
390 
435 
4.84 
537 
5.96 
6.61 
7.39 

8.99 
999 

ail 

11.0 
12.2 
134 
14.8 
16 2 
17:7 
19.4 
21.2 
23.1 

12 8 
1311 
13.3 

14.2 
14.5 
14.7 
14.9 
15.2 
15.4 
15.6 
15.9 
16.2 
185 
16.8 
17.0 
17.2 
17.4 
17.6 
17.8 
18.1 
183 

186 
18.8 
19.0 
19.1 
193 
19 5 
19.7 
19.8 
20.1 
20.3 
20.6 
20.8 
21.1 

13.6 
13.9 

185 

- 

(0 

ms 
rg.sec2 - S. d. 

7.03.104 
8.03.104 
9.22.104 
1.05- 105 
1.20.105 
1.3ij.105 
1.53.105 

2.22.105 
2.50.105 
2.79.105 
3.13.105 
3.48.105 
3.88.105 
4.30.105 
4.80.105 
5.35.105 
5.95.105 

738.105 
8.16.105 
9.06.105 
1.01 * 106 
1.12 * 106 
1.23 * 108 
1.36 IO" 
1.51 106 
1.66 106 
1.82 * 106 
1.99 * 106 
2.16 * 106 
2.36 - 106 
2.56 - 106 
2.79 * 10" 
3.02 * 106 
3.28 - 106 

1.74 * lo5 
1.98.106 

6.64 IO5 
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A P P E N D I X  3 

TABLE OF THE FUNCTIONS Q, (eo), e,  (eo), AND Ip2 (eo) 

eo 

0 
0,001 
0,002 
0.003 
0.004 
0.005 
0.006 
0.007 
0.008 
0.009 

0.01 1 
0.012 
0,013 
0,014 
0.015 
0.016 
0.017 
0.018 
0.019 
0.020 
01021 
0.022 
0.023 
0.024 
OM5 
0.026 
a027 
0.028 
0.029 
0.030 
0403 1 
0,032 
0.033 
Q 034 

0.037 
0.038 
0.039 
0.040 
0.041 
0042 

aoio 

0.035 
0.036 

a m  

0 
1.665. 
4.474. io-$ 
8.220.10-~ 
1.266. io-' 
1.769. IO-' 
2.326 a lo-' 
2.932. lo-' 
3,583 - 
4.276. lo-' 

5.780 lo-' 
6.586 IO-' 
7.428 a lo-' 
8.303. lo-' 
9.210 * lo-' 
1.015. lo-' 

5.009. 

1.1 12. 10:' 
1.211 lo-; 
1.314 * IO-, 
1.419 * 10 
1.527 lo-' 
1.638. lo-' 
1.751. 
1.867. lo-' 
1.985. lo-: 
2107 * IO- 
2.229 * lo-* 
2355. io-' 
2.483. io-' 

3.016. IO-' 
3.1%. io-' 

3.439 * 10 
3.584 e 

3.731 lo-' 
3.880. IO-' 
4.031 lo-' 
4.184.10-3 
4.339 * lo-; 

2.613 lo-' 
2,745. lo-' 
2879. lo-' 

3.296 * 105," 

4.496.10- 

91 

0 

1.504.10-i 

3.014 - 10:: 
4.532. lo-' 

6.821 + lov3 
7.588 lo-' 
8.356. lo-' 
9.126 lo-: 

1.145. lo-: 

1.378. lo-* 

1.535. 

1,772 * 
1,851. 
1.930. IO-: 
2010 * 10- 
2089. lo-: 
2,169 * IO- 
2.249 - lo-' 
2329. lo-' 
2.410 IO-' 
2.490 - lo-' 
2.571 lo-' 

2.733 + lo-' 
2.814 - lo-' 
2,896. lo-' 
2,978 - lo-* 

7.509. i0z4 

2258 * 10 

3,772 10 

5.293. lo-' 
6.0%. 10" 

9,898 . 10:' 
1.067 * 10 

1.222 10- 
1300.10-2 

L457 * 10- 

1.614 * lo-: 
1.693 * 10- 

2.652 lo-' 

3.060 * lo-' 
3.142 * IO-' 
3.224 * lo-' 
3.306 lo-' 
3.389 lo-' 

0 
1.668 - 
8.241 
1.270' lo-' 
1.777 lo-' 
2.338 - 
2.949. lo-' 
3.607 - lo-' 
4.308 - lo-' 

4.481. 1 0 - ~  

5.050. IO-' 
5.8%. io-' 
6852. io-' 
7.509. io-' 
8.400 lo-' 
9.326. lo-' 
1.028 lo-' 
1.127. lo-' 

1.335. lo-' 

1.554. 
1.668 3 101," 

1.905 lo-' 
2.027. lo-' 
2.152 - lo-' 
2.280 lo-' 
2.410.10-i 
2.543 10- 
2.678 * lo-," 
2.817 * 10- 
2.957. lo-' 

3.245. 

3.695. lo-' 

4.167. IO-' 
4.328 - lo-' 

1.230. lo-' 

1.443 * lo-' 

I. 785 * 10 

3.100. IO-' 

3.393. lo-' 
3.543 * lo-' 

3.850. lo-' 
4.007 * lo-' 

4.492 * lo-' 
4659 10'' 
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APPENDIX 3 (COnt. ) 

e 

0.044 
0.045 
0.046 
0.047 
0.048 
0.049 
0.050 
0,051 
0,052 
0.053 
0.054 
0.055 
0.056 
0,057 
0.058 
0.059 
0.060 
0.061 
0.062 
0.063 
0.064 
0.065 
O M 6  
0,067 
0.068 
0.069 
0.070 
0.07 1 
0.072 
0.073 
0.074 
0.075 
0.076 
0.377 
0.078 

0.080 
0.081 
0.082 
0.083 
0.084 
0.085 

0.087 
0.088 
a089 

0.079 

0.086 

4.654.10-3 

4.978.10-3 

5.646.10-3 

5.991.10-3 
6.166.10-3 
6.343.10-3 
6.521.10-3 
6.701 . 10-3 
6.883.10-3 
7.067.10-3 

7.439.10-3 
7.628.10-3 
7.818.10-3 
8.010.10-3 
8.204.10-3 
8.399.10-3 
a595.10-3 
8.794.10-3 
8.993.10-3 
9.195.10-3 
9.398.10-3 
9.602.10-3 
9.809,10-3 
1.002 * 10-2 
1.023. 10-2 
1.044.10-2 
1.065 * 10-2 
1.086 * 10-2 
1.108.10-2 
1.129 * 10-2 
1.151. 1 0 - 2  
1.173 10-2 
1.195 * 10-2 
1.218 * 10-2 
1.240 - 1 0 - 2  
1.262 10-2 

4.815. 

5.142-10-3 
5.308. 10-3 
5.476.10-3 

5.817 * 10-a 

7.252 . 1 0 - 3  

1.285. 10-2 
1.308 * 10-2 
1.331 * 10-9 
1354 * 10-2 

3.471 lo-' 
3554.10-2 
3638 - 10-2 
3.721 * 10-2 
3.804 * 10-2 
3.888 * 10-2 
3.972 10-2 
4.056 *.10-2 
4.140 * 10-2  
4,224 * 10-2  
4.309 - 10-2 
4.394 10- 2 
4.479 * 10- 2 
4.564 10-2 
4.649 - 10-2 
4.735. 10-2 
41820 * 10-2 
4.906 * 10-2 
4.992 10-2 
5,078. 10-2  
5.165 * 10-2 
5,251.10-2 
5.338 * 10-2 
5.425.10-2 
5.512 * 10-2  
5.600 10-2 
5,687. 10-2 
5.775 * 10-2 
5.863 * 10-2 
5.951 * 10-2 
6.039 . 10-2 
6.128 10-2 
6.216 * 10-2 
6.305 10-2 
6.394 10-2 
6.483.10-2 
6573 * 10-2 
6.662 * 10-2 
6.752 * 10-2 
6,842 * 10-2 
6932 10-2 
7.022 * 10-2 
7.113 * 10-2 
7.204 - 10-2 
7.294 10-2 
7.386 * 10-2  

4% 

4.827 * 10-3 
4.998.10-8 
5.171.10-3 
5.36.10-3 
5.523. 10-3 
5.703.10-3 
5.884. 1 0 - 3  
6.068.10-3 
6.254.10-3 
6.442. 10-3 
6632.10-3 
6.825.10-3 
7.019. 10-3 
7.216. 1 0 - 3  
7.414.10-3 
7.615. 10-3 
7.818. 10-8 
8.022 - 10-3 
8 . m .  10-3 
8.438. 10-3 
8.649.10-3 
8.862. 10-3 
9.077.10-3 
9.294.10-3 
9.513. 10-3 
9.734.10-3 
9.957.10-3 
1.018.10-2 
1.041.10-2 
1.064 * 10-2 
1.087 * 10-2 
1.110.10-2 
1,134 10-2 
1.157 * 10-2 
1.181 * 10-2 
1.205. 10-2 
1.230.10-2 
1.254 * 10-2 
1.279 * 10-2 
1.304 * 10-2 
1,329 10-2 
1.354 * 10-2 
1.380.10-2 
L405 - 10-2 
1.431 * 10-2 
1.457 * 10-2 
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- 
e3 

0.10 
0.1 1 
0.12 
0.13 
0.14 
0.15 
0.16 
0.17 
0.18 
0.19 
02.0 
0.21 
0.22 
0.23 
0 24 
0.25 
0.26 
0.27 
0.28 
0.29 
0.30 
0.31 
0.32 
0.33 
0.34 
0.35 
0.36 
0.37 
0.38 
0.39 
0.40 

- 

- 

1.377 ' lo-' 
1.401 lo-' 
1.424. lo-' 
1.448 
1.472. lo-' 
1.496. lo-' 

1.544. lo-' 
1.569.10~,' 

1.618. lo-' 

1-520 3 lo-' 

1.593 10 

APPENDIX 3 (cont. ) 

$8  I $1 eo I $ I 
0.090 
0.09 1 
0.092 
0.093 
0.094 
0.095 
0.096 
0.097 
0.098 
0.099 
0.100 

7.477 * lo+ 

7.755. lo-' 

7.568 101; 

7.844 - lo-' 
7.936 lo-' 
8.028 + lo-' 
8.121. lo-' 
8.214 lo-' 
8.307. lo-* 

7.660. 10 

8.400 IO-' 

1.484. lo-' 
1.510. lo-* 
1.537. lo-' 
1.563 - 
1.618. lo-' 
1.645. lo-' 

1.590 * lo-' 

1.673 lo-' 
1.701 . lo-' 
1.729 * lo-' 
1.757 * lo-' 

J, 

0.01618 
0.01872 
0.02140 
0.0242 1 
0.02715 
0.03022 
0.03341 
0.03674 
0.04018 
0.04376 
0.0474G 
0.051 29 
0.05525 
0,05934 
0.06355 
0.06791 
0.07240 
0.07703 
0.08 180 
0.08671 
0.09177 
0.09697 
0.1023 
0.1079 
0.1 135 
0.1194 
0,1254 
0.1316 
0.1380 
0.1446 

$1 

0.0840: 
0.09341 
0.1030 
0.1128 
0.1 228 
0.1331 
0.1435 
(2.1540 
0.1648 
0.1760 
0.1 872 
G.1986 
0.2103 
0.2222 
0.2343 
0.2466 
0.2592 
0.2720 
0.2850 
0.2982 
0.3117 
0.3254 
0.3393 
0.3536 
0.3681 
0.3828 
0.3978 
0.4131 
0.4286 
0.4444 
0.4605 

- 

- 

- 
eo 

0.41 
0.42 
0.43 
0.44 
0.45 
0 46 
0.47 
0.48 
0.49 
0.50 
0.51 
0.52 
0.53 
0.54 
0.55 
0.56 
0.57 
0.58 
0.59 
0.60 
0.61 
0.62 
0.63 
0.64 
0.65 
0.66 
0.67 
0.68 
0.69 
0.70 
0.71 

- 

- 

Ip 

0,1583 
C.1655 
0.1729 
0.1805 
0.1883 
0.1964 
0.2048 
0.2134 
0.2223 
0.2315 
0.2410 
0.2508 
0.2610 
0.2715 
0.2824 
0.2936 
0.3053 
0.31 75 
0.3300 
0.3431 
0.3567 
0.3709 
0.3857 
0.401 1 
0.4171 
0.4339 
0,4515 
0.4699 
0,4893 
0.5096 
OS309  - 

$1 

0.4768 
0.4935 
0.5104 
0.5277 
0.5452 
0.5632 
0.5814 
0.5998 
0.6188 
0.6380 
0.6574 
0.6774 
0.6976 
0.7184 
0.7394 
0.7606 
Q 7826 
0.5048 

0.8505 
0.8740 

0.9226 
0.9476 
0.9732 
0.9992 
1.026 
1.053 
1.081 
1.109 
1.138 

0.8274 

0.8980 

- 

- 
eo 

0.72 
0.73 
0.74 
0.75 
0.76 
0.77 
0.78 
0.79 
0.80 
0.81 
0.82 
0.83 
0.84 
0.85 
0.86 
0.87 
0.88 
0.89 
0.90 
0.91 
0.92 
0.93 
0.94 
0.95 
0.96 
0.97 
0.98 
0.99 
1 .oo 

- 

1_1 

-- 
rl, 

0.5535 
0.5773 
0.6025 
0.6292 
0.6576 
0.6879 
0.7202 
0.7548 
0.7921 
0.8323 
08758 
0.9232 
0.9750 
1.032 
1.095 
1.165 
1.244 
1.333 
1.436 
1.555 
1.697 
1.868 
2.080 
2.353 
2724 
3.267 
4.181 
6.247 
a3 

- 

9, 

1.168 
1.198 
1.230 
1.260 
1.294 
1.328 
1.362 
1.398 
1.435 
1.472 
1.512 
1.551 
1.593 
1.636 
1.682 
1.728 
1.776 
1.827 
1.881 
1.936 
1. !a6 
2.061 
2.130 
2.205 

2.384 
2.496 
2.643 
3.0 

7 

2.289 

-- 
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A P P E N D I X  4 

TABLE OF THE FUNCTIONS Ff (v) ( L l ,  2, 3, 4) 

0 
0.1 
0.2 
0.3 
0.4 
045 
0'6 
07 
0.8 
0.9 
1.0 
1.1 
L2 
1.3 
1,4 
1.5 

1.7 
1.8 
1.9 
2.0 

1.6 

I V 

1 
0.998 
0.995 
0.989 
0.980 
0.969 
0.956 
0.941 
0.924 
0.905 
0.885 
0.863 
0.840 
0.815 
0.790 
0.764 

0.710 
0.683 
0.656 
0.629 

0.737 

0897 
.0.892 
0.886 
0.881 
0.877 
0.872 
0.869 
0,865 
0.861 
0,858 
G.855 
0.852 
0.849 
0.846 

7 
I 

4.8 
4.9 
5.0 
5.1 
5.2 
5.3 
5.4 
5.5 
5.6 
57 
5.8 
5.9 
6.0 
6.1 

- 
V 

1.310 
1.288 
1,268 
1,251 
1.235 
1.221 
1.209 

1.178 
1.170 
1,163 
1.156 
1.149 

1.198 
1,188 

2.0 
2.1 
2.2 
23 
2.4 
2.5 
9.6 
2.7 
2.8 
2.9 
3.0 
3.1 
3.2 
3.3 - 

1.075 3.4 
1.051 3.5 
1.030 3.6 
1.012 3.7 
0.995 3.8 
0.980 3.9 
0.967 4.0 

0.935 4.3 
0.926 4.4 
0.918 4.5 
0.910 4.6 
0.904 4.7 

0.955 4.1 
0.944 4.2 

FZ 

1 
1 
1.005 
1.011 
1.020 
1.031 
1.044 
1.060 
1,078 
1.098 
1.120 
1,144 
1.170 
1.198 
1.227 
1.258 
1.291 
1.324 
1.360 
1.396 
1,433 

- 
Fa 
- 
1.143 
1.138 
1.133 
1.128 
1.124 
1.120 
1.116 
1.113 
1.109 
1.106 
1,103 
1.100 
1.098 
1.095 
c_ 

Fa 

I 
co 

27.838 

6480 
4,613 
3.607 
2.991 
2.582 
2293 
2.08 1 
1.919 
1.792 
1.692 
1.610 

1.487 
1.440 
1.400 
1.366 
1.336 
1.310 

10847 

1.543 

co 
15.007 
7,538 
5.056 
3.825 
3.093 
2.61 1 
2.27 1 
2.021 
1.830 
1.680 
1.560 
1.46:2 
1.382 
1.315 
1.258 
1.210 
1,169 
1.133 
1.102 
1.075 

- 
Fa 
- 
1.093 
1.090 
1.088 
1.066 
1,084 
LO82 
1.080 
1.078 
1,077 
1.075 
1.074 
1.072 
1.071 
1.070 
7 

- 
F4 

0,844 
0.842 
0.839 
0.837 
0.835 
0,833 
0.832 
0.830 
0.828 
0.826 
0.825 
G.824 
0.822 
0.821 

- 

7 
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A P P E N D I X  4 (cont.) 

1.068 0.819 
1.067 0.818 
1.066 0.817 
1.065 0.816 
1.064 0,814 
1.063 0.813 
1.062 0.812 
1.061 0.811 
1.060 0.810 
1.059 0.810 
1.058 0.808 
1.057 0.808 
1.056 a806 

6.2 
6.3 
6.4 
6.5 
6.6 
6.7 
6.8 
6.9 
7.0 
7.1 
7.2 
7.3 
7.4 
- 

7.5 1.055 
7.6 1.054 
7.7 1.054 
7.8 1.053 
7.9 1.052 
8.0 1.051 
8.1 1.051 
8.2 1.050 
8.3 1.049 
8.4 1.049 
8.5 1.048 
8 6  1.048 
8.7 1.047 

C.806 
0.805 
0.804 
0.803 
0.802 
0.802 
0.801 
0.801 
0.800 
0,799 
0.799 
0.798 
c.797 
- 

n I 

8.8 1.046 
8.9 1.046 
9.0 1.045 
9.1 1.045 
9 2  1.044 
9.3 1.044 
9.4 1,043 
9,5 1.043 
9.6 1.042 
9.7 1.042 
9.8 1.041 
9.9 1.041 

10.0 1.040 

- 
p4 

0.797 
C. 796 
0.796 
0.795 
0.794 
0.794 
0.793 
0.793 
0.792 
0.792 
0.791 
0.791 
0.790 

_1 

- 
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S U B J E C T  I N D E X  

Acceleration, perturbing 13, 290, 
291, 296 

normal 290 
unperturbed 290 

Aerodynamic drag, see A i r  drag 
A i r  drag 183, 228 ff .  

Anomalous field 197 
Anomaly, eccentric 60 

in elliptical orbit 255 f f .  

mean 60 
true 52, 75 

Aphelion 54 
Apocenter 54 
Apogee 19, 54 
Areal integral 49 
Areal velocity 50 
Argument of perigee 27  
Atmosphere, CIRA 230, 232, 331, 333 

density scale height 231 
dynamic model 230 
geopotential height 236 
isothermal 231 
local model 231 
static (steady-state) model 2 30 
vertical equilibrium of 229 

Atmospheric rotation, effec of 248 
Auxiliary circle 59 

COSPAR International Reference 
Atmosphere, see Atmosphere, 
CIRA 

Density scale height 231 
Displacement of orbit in longitude 8 
Distance, pericenter 76 

perigee 76 
perihelion 76 

Diurnal displacement of orbit 8 
Drag, see A i r  drag 

Earth 's  gravity, see Gravity 
Earth 's  shadow 329 
Eccentricity 27 

linear 55 
Eclipse of satellite 329 
Elements, see Orbital elements 
Energy integral 51 
Equation, Euler-Lambert 104,112 f f ,  

Kepler, see Kepler's equation 
of motion in osculating elements 

of vertical equilibrium of the 
185, 191 

atmosphere 229 
Escape orbit, hyperbolic 87 

Evolution of orbit 313 
velocity 53 

Field of gravity, see Gravity 

Flight time, elliptical orbit 59 
anomalies 197 

hyperbolic orbit 79 
parabolic orbit 92 

Fly-by hyperbolic orbit 85 

Geocentric reference ellipsoid 197 
Geoid 197 

Geopotential height 236 
Gravitational pull of Sun, Moon, 

and planets 183, 289, 294 
Gravity, anomalies 197, 200 ff .  

undulations 200 

Newtonian 47 
normal 197 
noncentral components of 183 
potential function 195 
sphere of action 292 
real 194 
zonal harmonics 198 

Ground track 7 
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Ground track of hyperbolic orbit 83 

Inclination 5 
Instant of osculation 184 
Integrals of  motion 48 ff. 

Kepler' s ec,uation 60 
of hyperbolic orbit 80 
of parabolic orbit 92 
of vertical elliptical motion 95 

Lifetime of satellite 245, 275 ff.  
Line of nodes 4 
Longitude of ascending node 5 

Mean satellite 26 
Model atmospheres, see Atmosphere 
"Molecular" temperature 232 
Motion, almost circular 24 

current parameters of 146 
mean circular 25 
nearly circular 24 
unperturbed 47 
vertical elliptical 94, 95 f f .  

hyperbolic 94, 96 ff.  
parabolic 94, 96 ff.  

Node, ascending 4 
longitude of 5 
descending 4 

Nodes, line of 4 
Normal acceleration 290 

Orbit, almost circular 28 
circuits, diurnal number of 8 
circular 1, 52 
critical 247 
diurnal displacement 8 
displacement per circuit 8 
eccentricity of 27 
elements of 6; also see Orbital 

elliptical 52, 54 ff. 
elements 

axes 54, 55 
center 55 
diameter 55 
foci 55 

evolution of 313 
escape 87 

Orbit, hyperbolic 73 ff.  
ascending branch 76 
asymptotes 75 
descending branch 76 
ground track of 83 

inclination of 5 
normal 14 
osculating 184 
parabolic 90 ff .  

axis 90 
perturbed 14 
plane of  4, 29, 49 
unperturbed 14 
vertical 90, 93 ff.  

Orbital elements 6 
almost circular orbit 28 
complete set  of 62 
elliptical orbit 61 ff. 
hyperbolic orbit 81 
nearly circular orbit 28 
osculating 184, 191 
parabolic orbit 92 

Orbital period, see Period of 
revolution 

Orbital plane 4, 29, 49 
Osculating elements 184 

Pericenter 54, 76 
distance 76 
velocity 78 

Perigee 19, 54, 76 
argument of  27 
distance 76 

Perihelion 54, 76 
distance 76 

Period of revolution 1, 61 
anomalistic 216 
elliptical orbit 59 
nodical 190, 216, 217 ff.  
osculating 2 16 
sidereal 216, 223 
unperturbed 2 16 
zonal 216 

Period, orbital, see Period of  

Perturbations 12 f f . ,  46 
caused by air drag 228 ff; 2 3 6 f f .  

rev0 lut ion 

in circular orbit 251 ff. 
in elliptical orbit 255 ff.  
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Perturbations 
caused by radiation pressure 

183, 315 ff .  
in circular orbit 323 ff. 
in elliptical orbit 325 ff.  

caused by variations in firing 
conditions 127 ff .  
second zonal harmonic 203 ff .  

classification of 46  
long-periodic 224, 308, 310 
lunisolar 183, 289, 295 ff .  
of orbit plane, circular orbit 204 

elliptical orbit 2 11 
of period, circular orbit 206 

elliptical orbit 215 
periodic 18, 39 ff .  

of circular orbit 207 
secular 18, 46, 265 ff., 308 

of elliptical orbit 211 f f .  
Perturbing accelerations 13, 290, 

291, 296 
body 290 
forces 183 ff .  

perturbation of 204, 2 11 
Plane, orbital 4, 29, 49 

P o h t  of osculation 184 
Potential function of gravity 195 

of centrifugal force 196 

Radiation pressure 183, 315 f f .  

Sector, elliptical limiting 108 
of first kind 107 
of second kind 107 

hyperbolic 108 ff.  
parabolic 108 f f .  

Subsatellite point 2 52 

Trajectory, see also Orbit 
elliptical of first kind 102 

limiting 102 
of second kind 102 

Velocity, areal  50 
asymptotic 77 
circular 1 
escape 53 

Zonal harmonics 198 
perturbations caused by 203 ff. 

345 




